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Abstract

We estimate the impact on child health of the unanticipated introduction of the Australian
Baby Bonus, a one-time $3,000 unconditional cash transfer given at birth. With population-
level administrative data from South Australia and a regression discontinuity design, we
find that eligible infants had fewer hospital presentations by age one for preventable, acute,
and severe problems. Our auxiliary analyses using nationally-representative data suggest
that parents increased spending on food and groceries, experienced less financial stress and
hardship, and improved physical and mental health. We calculate that 34% of the payout

was recouped within the first year due to lower healthcare costs.
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1 Introduction

It is well established that poverty in early childhood has large negative consequences on edu-
cational attainment, labour market outcomes, health, criminality in adulthood, and longevity
(Almond and Currie, 2011; Almond, Currie and Duque, 2017, 2018). A key moment in a child’s
life when poverty is particularly harmful is at birth, a moment when parents experience a sharp
rise in stress that is only exacerbated by the intense financial pressures associated the arrival of a
newborn in the household. Unconditional cash transfers promise a simple way to alleviate those

financial pressures with little concern for take-up, albeit with large upfront public costs.

Several governments worldwide (e.g., Australia, Québec, Singapore, Spain, France, Poland)
have opted to pay baby bonuses, a one-off cash transfer offered to families at the birth of a child
with the aim of alleviating the perceived financial pressures of raising a child (Parr and Guest,
2011; McDonald, 2006a,b). Baby bonuses are administered through the tax and welfare system,
easy to adjust when needed, and easy to cancel in times of fiscal austerity. Their small scale
and one-off nature are not intended to change permanent income or life-cycle consumption,
saving, and investment behaviors. Yet a large enough one-off cash transfer can help overcome
the major initial expenses after the birth of child that could crowd out other expenditures. Baby
bonuses may improve children’s outcomes if parents spend the bonus on “child-centered goods
like books, quality day care or preschool programs, better dependent healthcare, or to move to a
better neighborhood” (Dahl and Lochner, 2012, p. 1931). Yet, these transfers also entail the
risk that parents use the cash to consume nonessential or even risky goods that may result in

unintended negative externalities for children (Currie and Gahvari, 2008).

In this paper, we estimate the effect of family income at birth on child health care utilization
and child health in early childhood. Our setting offers a unique opportunity to implement a
highly credible research design using detailed population-level hospital records on child health
along with detailed parental behaviors as mechanisms. To answer our research question, we
estimate regression discontinuity models of the effect of being born just before versus just after
the implementation of the Australian Baby Bonus (ABB)—an unconditional cash transfer paid
at birth—on children’s health care utilization and health status in the first five years of life.
We use population-level perinatal records, birth records, emergency department and inpatient
services records in all public hospitals in South Australia. Our data are exceptionally rich and
allow us to analyze the entire spectrum of presenting problems for children from birth onward.
They allow us to identify longitudinally and in depth the nature of the hospitalization down to
the diagnosis, the urgency and severity of the health problem, and whether the presentation was

planned, such as with a referral or for elective care.!

I'This level of detail allows us to distinguish between areas of health that can be affected directly by a windfall
cash payment (e.g., money spent on extra health care to treat a preexisting condition, which is not fully covered
by universal health care), or indirectly (e.g., money spent on alcohol, which increases trauma presentations at the



The Baby Bonus was an unconditional cash transfer initially amounting to $3,000% (US$2,400),
a small yet economically meaningful windfall income for families at a time when Australia was
the only OECD country other than the United States without paid parental leave legislation. It
represented 2.5 times the weekly median disposable household income in 2004 and 5.3 times
the weekly disposable household income of families in the lowest income decile. The Baby
Bonus was discontinued in 2014, shortly after the introduction of paid parental leave. Almost
all eligible households (over 95%) claimed the payment (see Drago et al., 2011, p. 383) and
received it within 14 days of the birth of the child. For identification, we exploit the unexpected
introduction of the Baby Bonus shortly before its implementation on July 1, 2004, which is also
the birth date eligibility threshold.

We find that the Baby Bonus led to a decline of 0.098 standard deviations in our index of health
care utilization for treated babies in their first year of life—an economically meaningful effect
in a country with universal access to health care and a high standard of living. Our main finding
also suggests that the Baby Bonus led to improvements in the health status of treated babies
because our index captures presentations for urgent, acute, and severe problems. In particular,
we show that the overall decline in health care utilization is driven by a decline in presentations
for urgent, acute, and severe problems that require hospital admissions and overnight stays. This
finding is important because it is unbiased by parental sorting because those outcomes are not

substituable by out-of-hospital care and are free of charge for all Australian residents.

Our findings are robust to several sensitivity checks, with our main estimate ranging from -0.05
to -0.31 and averaging at -0.11 standard deviations in health care utilization. Our preferred
specification excludes all births within seven days of the birth date eligibility threshold to address
identification concerns related to birth shifting.> Our results are robust to using alternative donuts
(from 5 to 15 days), using alternative data-driven optimal-bandwidths (CER-, MSE-, asymmetric
CER- and half CER-optimal bandwidths) and researcher-chosen bandwidths (60- and 90-day
bandwidths), considering selective pregnancy terminations, conducting permutation tests with
placebo thresholds (+/— 90 days) and placebo years prior to the policy, as well as multiple
hypothesis testing corrections for the familywise error rate (Romano and Wolf, 2005a,b, 2016;
Holm, 1979), and to alternative ways of clustering standard errors across both MSE- and
CER-optimal bandwidths.

Back-of-the-envelope calculations indicate that the Baby Bonus represented a large return on

investment due to reduced hospital care utilization. We find that 34% of the initial payout of the

emergency department).

2 All amounts are in Australian dollars unless otherwise noted.

3See Section 4 and additional details in Appendix A). Our results are robust to using the 15-day donut recommended
by Jacobson, Kogelnik and Royer (2021) for settings where births can be shifted both before and after the threshold

(although setting like ours, as noted by Jacobson, Kogelnik and Royer (2021), the financial incentives tied to the
birth date eligibility threshold of the cash payment create no incentives for parents to shift a birth earlier)



Australian Baby Bonus was recouped in the first year of life of eligible children. Positive income
shocks early in life may reduce the economic burden to society through medical expenditure
savings in the longer run. Our estimates also likely underestimate the true return on investment
of the Baby Bonus because our calculations are based on hospitalizations for severe, acute, and
urgent problems, and do not include less severe, but still costly, presentations. Better calculations
in the future should also consider improvements along the entire spectrum of health problems,
using for example, Medicare expenditures or primary care data, and consider dynamic effects at

later ages.*

We explore the two categories of mechanisms hypothesized in past literature: the “resources
channel”—the direct impact of additional income that allows carers to purchase more goods and
services—and the “family process channel”—the indirect impact of income on the psychological
well-being of the family, which allows parents to spend more time with children in productive
activities (Mayer, 1997; Yeung, Linver and Brooks-Gunn, 2002; Milligan and Stabile, 2011).
We show evidence of both mechanisms at play using our population-level administrative records
and additionally using supplementary data from the Household, Income and Labour Dynamics
in Australia (HILDA), Australia’s nationally-representative longitudinal household survey. The
HILDA offers unique measures of household expenditures, financial stress and hardship, along
with detailed measures of parental subjective physical and mental health, marital relationships,
labor supply and child care intentions. Although our sample size is small, we find suggestive
evidence supporting both the “resources channel” and the "family process channel". First, the
Baby Bonus allowed families to increase expenditures on food and groceries and decreased the

incidence of financial stress and financial hardship (resources channel).

Second, our findings using administrative records suggest that the Baby Bonus allowed parents to
invest more in preventive health. We show that our main result is driven by a reduction in hospital
presentations deemed "potentially preventable" by a doctor, in particular acute bronchiolitis, a
respiratory health problem that is the most common type of potentially preventable pediatric
presentation for infants and that can cause asthma in older children. To perform this analysis,
we exploit a unique feature of our hospital records, which associates a binary indicator for a
"potentially preventable pediatric problem" to each diagnosis code included in each presentation
record. This indicator marks hospital presentations that a medical doctor deemed preventable
if parents had taken appropriate actions, that is, parental behaviors that should have prevented
babies’ conditions from becoming acute or severe and thus preventing hospital presentations
for those problems. Typically the indicator is positive for vaccine-preventable conditions, acute

conditions, and chronic conditions that parents could have prevented with appropriate use of

“For example through early detection and prevention of respiratory problems. There is recent evidence that wheezing
episodes early in life with the common cold virus is a major risk factor for the later diagnosis of asthma at age six.
Children with asthma are at high risk of developing complications later in life and are therefore in need of acute
care (see Busse, Lemanske Jr. and Gern (2010) for an overview).



primary care. In addition, the magnitude of our effects is larger for children from disadvantaged
backgrounds, which is consistent with the Baby Bonus alleviating income constraints. Finally,
using the HILDA, we find that the Baby Bonus increased marital stability and improved parental
self-assessed physical and mental health; we also find suggestive evidence of an increase in
child care use for older children in the family but no discernible impact on maternal intended
labor supply. Our findings combined suggest that parental investments play an important role in
explaining the decline in health care utilization and the increase in health status of infants as a

result of the introduction of the Baby Bonus.

This paper contributes to a strand of literature focused on baby bonus policies, which has largely
centered on birth shifting as an unintended consequence of financial incentives associated with
baby bonuses. Yet, surprisingly little is known about the impact of baby bonuses on children’s
health outcomes and their parents’ responses. With the exception of Borra et al. (2021), past
studies have paid little attention to the impact of receiving those payments on children’s human
and health capital, but have instead focused much attention on birth manipulation induced by
financial incentives. Most of the evidence on baby bonus policies originates from the Spanish
and Australian experiences. The main findings of this literature are that baby bonus policies can
i) cause small increases in fertility (through abortions and conceptions) (Sinclair, Boymal and
De Silva, 2012; Gonzélez, 2013; Gonzdlez and Trommlerové, 2021) and childbearing intentions,
especially for women from lower-income households (Risse, 2010); ii) allow mothers to stay
home longer after the birth of a child (Gonzalez, 2013); and iii) have none to modest medium-
term impacts on children’s human capital formation, especially for children from disadvantaged
backgrounds (Deutscher and Breunig, 2018; Borra et al., 2021). The bulk of the literature has
focused on the unintended consequences of announcing the introduction of baby bonus policies
(Gans and Leigh, 2009), their cancellation (Borra, Gonzélez and Sevilla, 2016, 2019), or both
(Gonzélez and Trommlerovd, 2021). Borra, Gonzdlez and Sevilla (2019) provide the first and
only evidence that birth shifting induced by the cancellation of the Sapnish baby bonus led
to worse health outcomes for shifted infants. The announcement of a birth threshold date for
eligibility for the payment creates small incentives for parents to shift the birth date of a baby in
utero, potentially harming the unborn child. Parents may gain from advancing the date of a birth
by induction to benefit from a cash transfer before its cancellation date, or from postponing the
date of a birth to become eligible for a cash transfer before its implementation date. Importantly
however, while it is relatively easy to advance the date of a birth by induction, it is not so easy to
postpone the birth of a child. This feature of our natural experiment allows us exclude shifted
births and to focus on the impact of the cash injection alone on child health outcomes and their

parents’ responses.” To the best of our knowledge, no other study has focused on estimating the

>While Gans and Leigh (2009) show that some birth shifting occurred with the introduction of the Australian Baby
Bonus, Deutscher and Breunig (2018) find precisely estimated no impact of birth shifting itself on children’s health
or educational outcomes in Australia.



impact of baby bonuses on children’s health outcomes and to study parental behavioral change

as mechanisms.

This study also contributes to the growing consensus that social safety nets and social programs
in general and cash injections in particular should be viewed as an investment in children that
have large positive returns (Bailey et al., 2020; Hoynes and Schanzenbach, 2018; Hoynes,
Schanzenbach and Almond, 2016; Aizer, Hoynes and Lleras-Muney, 2022). Our findings
contribute to a long-standing literature on the effectiveness of government social assistance,
which has shifted its focus in recent years to investigate the impact of social programs on
children’s birth outcomes, health, human capital, and well-being into adulthood (Aizer et al.,
2016; Barr, Eggleston and Smith, 2022). This newer evidence concerns baby bonus payments
(Deutscher and Breunig, 2018; Gonzdlez, 2013; Borra et al., 2021; Cygan-Rehm and Karbownik,
2022), earned-income tax credits and cash transfers (Hoynes, Miller and Simon, 2015; Hoynes,
Schanzenbach and Almond, 2016; Dahl and Lochner, 2012; Currie and Almond, 2011; Milligan
and Stabile, 2011; Duncan, Morris and Rodrigues, 2011; Amarante et al., 2016; Barr, Eggleston
and Smith, 2022), nutritional assistance programs (Almond, Hoynes and Schanzenbach, 2011;
East, 2020; Barr and Smith, 2023) and paid maternity leave (Baker and Milligan, 2010; Rossin,
2011; Dustmann and Schonberg, 2012; Carneiro, Lgken and Salvanes, 2015) among others. In
particular, Barr, Eggleston and Smith (2022) shows that small cash injections at birth increase
adult earnings by up to 2%, but this study is limited in the number of mechanisms it can explore.
Our study is unique in providing evidence on how parental investments in response to cash

transfers can play a major role in generating positive returns to cash transfer policies.

More generally, this study also contributes to improving our understanding of the channels
through which household income matters for children’s health and human capital outcomes
(Currie and Almond, 2011; Almond, Currie and Duque, 2018; Cesarini et al., 2016; Kuehnle,
2014; Currie, 2009; Case, Lee and Paxson, 2008; Currie, Shields and Price, 2007; Propper, Rigg
and Burgess, 2007; Currie and Stabile, 2003; Case, Lubotsky and Paxson, 2002; Yeung, Linver
and Brooks-Gunn, 2002). Identifying the causal impact of household income on children’s health
has been difficult because few compelling randomization experiments exist, with the exception of
the ongoing “Baby’s First Years” randomized control trial (see e.g., Noble et al., 2021). Previous
credible evaluations have exploited lottery winnings (Cesarini et al., 2016), instrumental variable
approaches (Kuehnle, 2014) or natural experiments, such as welfare expansions (Duncan, Morris
and Rodrigues, 2011), Earned Income Tax Credit expansions in the United States (see e.g.,
Hoynes, Miller and Simon, 2015; Dahl and Lochner, 2012), tax benefits such as the Canada
Child Tax Benefit (Milligan and Stabile, 2011), and even casino windfalls (Akee et al., 2010).
This strand of literature focuses on large shocks to household income that are more permanent
in nature, which often affect working parents; surprisingly few studies focus on the impact of a
small one-off unconditional cash transfer that do not change permanent income but simply buffer

short-term financial stress. Jacob et al. (2022) and Pilkauskas et al. (2022) are two particularly



relevant studies that investigate in-depths responses of disadvantaged households to a short-run
cash injection in the United States during the COVID-19 crisis. Both studies find only suggestive
evidence regarding material hardship and mental health. In contrast, our findings on child health
and mechanisms indicate that even a small, one-off, and unconditional payment can have a

meaningful impact on child health and their parents.

2 Institutional Background

The Australian Baby Bonus was an $3,000 unconditional and nontaxable lump sum offered to
parents for each birth (or adoption of a child under two years) on or after July 1, 2004. The
Australian Government announced it on May 11, 2004 in the new budget—just a short time
period before its implementation. The primary intention of the policy was to boost fertility by
absorbing part of the (perceived) costs associated with the birth of a child. The introduction
of the Baby Bonus can therefore be seen as a natural experiment for all births between July
2004 and December 2004. A short period of less than seven weeks between announcement and

implementation left no room for a fertility response in the short run.®

The Baby Bonus was atypical and of much broader scope than previous policies. First, it was not
means tested. Any family who had a newborn baby received the bonus independent of family
size or parental employment status. Second, the cash benefit was a sizeable amount of money,
especially for families living on low incomes. The lump sum was 2.5 times the weekly median
disposable household income of households with a newborn in 2004, or 5.3 times the weekly
disposable household income of families in the lowest income decile. Overall, the Baby Bonus
represented a one-time increase in the median disposable household income for families who
had a baby born in 2004 of almost 5%.’

Between its introduction and abolition on March 1, 2014, the program underwent important
structural changes, which included subsequent increases to $4,000 and $5,000 on July 1, 2006
and July 1, 2008, respectively. As of 2009, it became means-tested and thus from this point
forward only accessible to families with incomes of $75,000 or less in the six months following
the birth or adoption of a child. Additionally, from 2008, parents under 18 would receive
the Baby Bonus in 13 fortnightly installments instead of an up-front payment, and it was

progressively rolled out to the entire population.

5The reason is that babies born on or after July 1, 2004, were in utero on the day of announcement. The first babies
conceived after May 11, 2004 in response to the announcement could not have been born before February 2005,
assuming full-term gestation of 37 weeks and over.

7Own calculations based on Wave 4 of the Household, Income, and Labor Dynamics in Australia survey. The
median disposable household income for families who had a newborn between January and December 2004 was
$61,663 ($1,186 per week). The mean household disposable income for households in the bottom decile of the
income distribution was $29,661 ($570 per week). The sample comprises 142 out of 161 households that had a
newborn in 2004 and were interviewed in Wave 4 of HILDA.



Importantly, the Baby Bonus was introduced at a time when Australia was one of two OECD
countries that had not yet legislated a compulsory parental leave payment scheme. This legisla-
tion was introduced as a further commitment to supporting families in 2011, in the form of the
national Paid Parental Leave program. The scheme offered up to 18 weeks’ pay at the minimum

wage, a much larger support than the Baby Bonus for eligible families.

The Baby Bonus replaced two family benefits, the Maternity Allowance and the First Child
Tax Refund (also referred to as the “Baby Bonus” at the time). Therefore, the Baby Bonus
did not represent a net increase of $3,000 for all households (Deutscher and Breunig, 2018).
The Maternity Allowance was a subsidy of $843 per child as part of the Family Tax Benefits
(FTB) available to mothers with modest incomes. The First Child Tax Refund was introduced
for babies born on or after July 1, 2002. It allowed mothers leaving the workforce to claim
income taxes paid in the year prior to the birth of the first child born between July 1, 2001
and June 30, 2004 (not necessarily the first-born child in the family). The amount was paid
back over a five-year period (i.e., some mothers received money back until 2009). If mothers
were returning to work prior to the fifth birthday of the child, the payable amount would be
reduced proportionally to the income earned. This subsidy, which was much more generous
to women with higher incomes, had low utilization rates probably because of its complex and
delayed tax refund scheme (Drago et al., 2011; Gans and Leigh, 2009). In stark contrast, the
Baby Bonus was administratively simple and low-cost to obtain. To acquire the benefit, parents
needed to lodge their claim within 26 weeks of the birth. Our own calculations using social
security payments confirm previous findings that almost all eligible households (over 95%)
received the payment (see Drago et al., 2011, p. 383). The median household received the
payment within 14 days of the birth of the child, while 90% received it within 49 days. Thus,
the payment was immediately effective. In relative terms, the policy was more favorable to low-
and middle-income households. According to Deutscher and Breunig (2018), 75% families with
babies born in June 2004 would have been financially better off under the new policy had it been

in effect at that time.

The effect of the Baby Bonus on children’s health outcomes must be understood in the context
of Australia’s health care system and its funding arrangements. Australia is a healthy, rich,
and highly developed country with an advanced health care system that ranks high amongst
OECD countries. Average life expectancy is high (82.6 years) and infant mortality (0.33%)
is low in comparison to other OECD countries (OECD 2019). Australia has universal health
insurance, under which 100% of the resident population has access to core services and medi-
cation. The Medicare program, implemented in 1984, is tax-funded. It has three major parts:
medical services, public hospitals, and prescriptions. It covers the expenses of public hospital
services (free treatment for patients in public hospitals) and visits to general physicians. The
“Pharmaceutical Benefits Scheme” provides subsidies for a variety of prescription medicines.

Hence, the fundamental structure of the hospital and medical services has been established in a



way to provide essential healthcare services to all Australians without experiencing financial
hardship (Rana, Alam and Gow, 2020). Although dental or other ancillary services are not
covered, children are fully covered under Medicare as well and receive additional free services

regarding dental care, immunizations, disability, autism, and vision impairment.®

3 Data

3.1 The South Australian Early Childhood Data Project

We conduct the analysis with linked administrative data from the South Australian Early Child-
hood Data Project (SA ECDP), which is one of the most comprehensive population-based
administrative research databases on children and families in Australia. It brings together
more than 30 different government administrative data sources spanning every cohort of South
Australian children born between 1999 and 2013 (see Nuske et al. (2016) for details).

Birth and Perinatal Data We obtain birth-related data from the Born Population dataset, a
merge of the Births Register and the South Australian Perinatal Statistics Collection covering
the universe of children born in South Australia between 1991 and 2016. Available variables
include date of birth, gestation length at birth, child sex, birth weight, and several indicators of
the child’s health at birth such as APGAR scores and admissions to neonatal intensive care units.
The data also contain detailed demographic characteristics of mothers, fathers, and children, as
well as detailed pregnancy histories of mothers (including maternal gestational health, smoking
behavior during pregnancy, and past pregnancies). These data are primarily sourced from the

Perinatal Statistics Collection and supplemented and validated by Births Registry data.

Hospital Records: Inpatient Services and Emergency Department Admissions Health
outcome measures are derived from the Integrated South Australian Activity Collection (ISAAC)
and the South Australian Emergency Department Data Collection (EDDC). The ISAAC data
cover the universe of admissions to inpatient services (IS) in public hospitals from July 2001
to 2014. The EDDC data cover the universe of admissions to emergency departments (ED)
in public hospitals from July 2003 to 2014 (Nuske et al., 2016; South Australian Emergency
Department Activity Data Standards, Government of South Australia, 2014). Both datasets
contain details about each patient’s admission, including their mode of transport to the hospital,

whether they came with a referral, whether the visit was planned, whether it is a first admission,

8For  more  details, see  https://www.servicesaustralia.gov.au/individuals/subjects/
whos-covered-medicare/childrens-health-care. Australia also has a market for private health in-
surance. Individuals are encouraged through the tax system and premium rebates by the government to purchase
private health insurance. The main aim of public subsidies to purchase health insurance is to relieve pressure from
the overburdened public hospital system, an aim that is generally accepted as not having been achieved (Rana,
Alam and Gow, 2020).


https://www.servicesaustralia.gov.au/individuals/subjects/whos-covered-medicare/childrens-health-care
https://www.servicesaustralia.gov.au/individuals/subjects/whos-covered-medicare/childrens-health-care

the severity of the patient’s condition as assessed by a triage nurse, and diagnosis code(s) and
other clinical indicators associated with the admission, length of stay, and the nature of the
separation (discharge, admission, transfer, death). The data are collected by hospital staff and

updated at the time of hospital separation.

3.2 Data Limitations

The administrative records used in this paper present both advantages and disadvantages. A first
concern is that by focusing on inpatient services and emergency care, we only observe censored
health outcomes due to selection into hospital care. Ideally we would have both health measures
capturing underlying health status and additional measures capturing access to hospital care.
To limit the risk that selection would bias our conclusions, we focus on acute and potentially
acute health conditions leading to presentations at emergency departments or inpatient services
through an emergency department admission. For those outcomes it is extremely unlikely that
parents would use primary care before presenting to emergency care. We discuss our outcome

variables in detail below and further discuss selection concerns in Section 7.2.

A second concern is that we only use public hospital records, which might also provide a partial
picture due to selection into public versus private hospital care sectors. In 2004, South Australia
had 99 hospitals, of which 76 were public and 23 were private, including 18 that shared an
emergency department with a sister public hospital. Importantly, young children are rarely
treated in private hospitals in Australia: emergency care for children is almost exclusively
provided in public hospitals. Around the time the Baby Bonus was implemented, private patient
infants (age 0—4) made up around 1.5% of all hospital separations (AIHW 2017, Figure 4.2),
and there was no child with private health insurance admitted to a private hospital for emergency

surgery in this age group (AIHW 2017, Figure 7.1).

3.3 Outcomes and Variables of Interest

In this paper we want to estimate the impact of the Baby Bonus on infant hospital health and
parental investments in child health. In the absence of unambiguous measures of child health
status, we construct a measure of the severity in infant health problems as a summary index of

health care utilization for infants derived from hospital records.’

This index sums up hospital presentations for babies from birth until age 1 excluding birth-

related problems.!?. The summation proxies health care need and therefore health issues that

“Measuring infant health beyond birth outcomes is more complex than measuring health for adults. The literature on
the health production function for infants acknowledges this difficulty. Most commonly, infant health is based on
proxies for morbidity such as diagnoses or health care utilization including hospitalization. See Corman, Dave and
Reichman (2018) for a review of this literature.

10We also construct an analog index for presentations in each subsequent year of life until age 5, e.g., from age 1
until age 2, from age 2 until age 3, etc.



require care. We add up binary indicators for each hospital care visit: (1) emergency department
only presentations; (2) inpatient services (without ED) presentations; (3) combined emergency
department presentations and admission to inpatient services. To give more weight to presenta-
tions with greater health severity, we added counts of presentations at emergency department
and inpatient services that were recorded as urgent, acute, or preventable, or presentations that

required an overnight stay.!! Table B.1 reports the full list of items that entered the index.!?

This summary measure is, thus, increasing in health care use intensity and severity. To be able
to interpret easily our index—higher values on the index indicate more severe health problems
and more needs for hospital care—, we deliberately exclude health care visits for electives
procedures or presentations with referrals because those are more likely to represent parental
health investments to improve a pre-existing health condition. In further analyses, we consider
each item separately as outcome variable and also present results regarding presentations for
elective procedures and presentations with referral. We standardise this index measure to mean
0 and standard deviation 1 for all babies born between 1991 and 2016 to avoid taking a stand at

this stage on the appropriate bandwidth to use in our empirical analyses.

Beyond our index of health care utilization, we also consider two additional sets of outcomes
that proxy parental investments in child health. First, we construct three additional outcomes that
require parental planning and additional co-payments (only available in the inpatient services
records) : 1) having a planned or scheduled visit; ii) having a presentation with referral for
specialist care; and iii) having a record for an elective intervention. Second, we characterize
in detail the type of presenting problem at inpatient services and at the emergency department
of our infant patients. For inpatient records, we use diagnosis codes based on the International
Statistical Classification of Diseases and Related Health Problems (ICD-10-AM), from which we
extract the broad categories of presenting problem.!? For emergency department records, we can

distinguish admissions by presenting problem and diagnosis group according to two different

Urgent and Acute as recorded by a triage nurse at the emergency department upon presentation, or by a doctor at
the emergency department of inpatient service upon discharge. Preventable is defined as “potentially preventable
pediatric” (PPP) presentations. These items are recorded in alignment with the Potentially Avoidable Hospitalization
(PAH) tool, a classification system developed in New Zealand for infants to flag health care use that could have
been avoided. This classification system is based on a broad spectrum of factors influencing health, in particular
appropriate access to primary care (see Anderson et al. (2012) for a description). For instance, a child could be
admitted for bronchiolitis, the first cause for emergency department visits for babies in their first year of life, but
they could be admitted for a “potentially preventable” bronchiolitis depending on the severity of the symptoms
and whether doctors consider that parents should have presented the child to a general practitioner (GP) before the
bronchiolitis became acute. Potentially preventable hospitalizations typically cover vaccine-preventable conditions,
acute conditions, and chronic conditions that parents could have prevented with appropriate primary care. Our
index aggregates all our binary outcomes associated with hospital presentations for acute or severe problems.

12Using factor analysis to build our index yielded one strong first factor and similar factor loadings across items; the
resulting index presented a strong Cronbach alpha of 0.86, with comparable and strong item-rest correlations across
items. However, the continuous index presented large lumps for children with no presentations. For this reason, we
preferred to construct on a summative scale.

13See International Classification of Diseases, 10th edition, Australian Modification (ICD-10-AM 10th Edition)
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sources: triage nurses upon presentation and medical doctor upon inspection or separation.
Triage nurses classify the presenting patient according to the presenting problem (for instance,
respiratory, head trauma), coded as broad categories that are consistent with diagnosis sub-
categories based on the ICD-10-AM. Upon inspection and separation, medical doctors update
the records to classify presentations into diagnosis codes, which determine how the hospital will
be reimbursed after separation. Each diagnosis is coded according to the ICD-10-AM. As both
sources of information have advantages and disadvantages, we consider both in the analysis.
We focus our analysis on the most common diagnoses, problems, or complaints for young
children and infants which include in this order i) respiratory problems, ii) digestive problems,
iii) infections, iv) skin problems, v) injuries, trauma, and poisoning, and vi) externally caused
health problems (generally accidents). For each presenting problem, we construct a summative
scale consisting of three dummies, one for whether an ED triage nurse classified a presentation
as presenting this problem, and another two dummies for whether an emergency department

doctor or a doctor at an inpatient service recorded a diagnosis associated with the presentation.

3.4  Summary Statistics

Table B.1 presents summary statistics on the health care summary index and the 11 individual
items which define the index in the first year of life of all babies born in South Australia between
July 1, 2003 and July 1, 2005. For this population (N = 35,236 babies), the average health index
is 0.183 and the standard deviation (SD) is 0.16. 45% of children have at least one presentation
within their first year of life, 32% have at least one presentation at the ED, and 30% have at
least one inpatient service. One in five children has at least one presentation to the ED for an
urgent or acute problem, one in eight has a presentation that led to a hospital admission, and of
these, one in five stays overnight. Other types of visits are rarer: planned visits (1.7% at EDs
and 2.4% at inpatient services), visits with a medical referral (5% at EDs and 9% at inpatient
services), and visits for an elective procedure (5.7% in inpatient services). Overall, more than
one in five children had a presentation that was potentially preventable, amounting to 19% of
ED presentations and 9.4% of inpatient service presentations. Figure B.1 presents histograms of

those different outcomes.

4  Empirical Strategy

4.1 Regression Discontinuity Design

The introduction of the Australian Baby Bonus on July 1, 2004, seems to naturally lend itself to
a sharp regression discontinuity design. No babies born before July 1, 2004, received the Baby
Bonus, while over 95% of all babies born after the birth date eligibility threshold received it. We
exploit the sharp change in eligibility for the Baby Bonus based on dates of birth to evaluate the
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causal impact of the Baby Bonus on health outcomes of children in their first years of life. We
compare the health outcomes of children born just before versus after July 1, 2004, by estimating

the following equation for a child i with health ¥; upon reaching age 1 (or age 2, 3, 4, or 5):

Y =a+BD;+7vg(Ri)+ &, (1)

where D; is a dummy variable taking value 1 if the child is born on or after July 1, 2004, and 0
otherwise; R; is the running variable corresponding to the child’s date of birth centered around
the birth date eligibility threshold, and g(.) is a linear function of the child’s date of birth. Thus,
B is our parameter of interest capturing the difference in health outcome Y; between treated and

control babies.

We estimate equation (1) using local linear estimation and robust bias-corrected inference
methods with CER-optimal bandwidth (Calonico, Cattaneo and Titiunik, 20145; Calonico,
Cattaneo and Farrell, 2018, 2020; Calonico et al., 2019).14 We choose local linear estimation
with a triangular kernel to give more weight to observations closest to the threshold, following
Gelman and Imbens (2019), who warn against the use of global high-order polynomials because
those often give too much weight to observations away from the threshold and bias estimates
at the threshold. We use robust bias-corrected inference that are robust to bias arising from
nonlinear conditional expectation functions of outcomes near the threshold (Calonico, Cattaneo
and Titiunik, 2014b).

Calonico, Cattaneo and Farrell (2020) argue that the MSE-optimal bandwidth is optimal for point
estimation and the CER-optimal bandwidth is optimal for inference purposes. Our preferred
specification focuses on the CER-optimal bandwidth in this context because the MSE-optimal
bandwidth is larger, and could potentially include babies born in different seasons which could
affect their health care needs in the first year of life. Table B.10 indicates that our main effects
on health care utilization and its subitems are robust to alternative choices of bandwidths, and

Section 7.1.4 presents falsification exercises regarding seasonalities.

Last, even though our running variable is discrete, we cluster standard errors at the level of birth
dates in our preferred specification following Bartalotti and Brummet (2017) and Abadie et al.
(2020, 2017). They recommend clustering at the experimental level in settings such as ours
where treatment assignment is correlated within clusters. Nonetheless, we show in Table B.7
that this choice of clustering standard errors does not affect our conclusions (under either MSE-
and CER-optimal bandwidths). "

14We use the rdrobust Stata command (Calonico, Cattaneo and Titiunik, 2014a; Calonico et al., 2017, January
2020 update).

ISWe also perform all our validity checks and analyses under a parametric specification following Lee and Card
(2008) and find similar results that are available upon request.
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4.2  Birth Shifting and Regression Discontinuity "Donut" Design

Our main parameter of interest yields a causal estimate of the true effect of the Baby Bonus
on the health outcomes of babies if two assumptions hold: 1) there is no manipulation in the
running variable determining assignment to treatment and control groups, and ii) there are no

significant differences between control and treatment babies at baseline.

4.2.1 Evidence on birth shifting

Previous studies have suggested that baby bonus policies create incentives for parents to shift
their child’s birth (see in particular Borra, Gonzélez and Sevilla, 2016, 2019; Gans and Leigh,
2009). The Australian government announced the introduction of the Baby Bonus on May
12, 2004, only seven weeks prior to July 1, 2004, which could not lead to immediate concep-
tion effects at the threshold, and did not lead to selective abortions (see Section 7). Yet the

announcement period did allow some families to shift the birth of their baby.

Figure 1 presents the number of daily births in South Australia within 30 days around July 1,
2004. This figure indicates common birth seasonalities: we see peaks on weekdays, when most
births take place, and valleys on weekends, when few births take place. July 1, 2004, was a
Thursday, so we would expect a peak on this day, but the peak is even higher than we should
expect. The three points immediately before July 1, 2004, are also weekdays, but we clearly see
fewer births occurring on those days. The third and fourth points to the right of the threshold are
Saturday and Sunday, which is why birth shifting falls from there onward.

We confirm in our sample the key finding from Gans and Leigh (2009) that birth shifting was
highly concentrated in the days immediately surrounding the birth date eligibility threshold of
July 1, 2004.'6 We calculate that 49 births were potentially shifted from the last week of June to
the first week of July, corresponding to 14% of all births expected in the last week of June, or
about 2 standard deviations of the average weekly birth variation that South Australian maternity
wards have experienced in the previous five years. With 40 maternity wards in South Australia,
this means that about every sixth maternity ward would have had one additional birth per day.
Although this can hardly be considered a substantial disruption of daily processes in maternity
wards, it does however suggest that babies born at a later date were potentially healthier than

nonshifted babies (who stayed in the control group).

We therefore implement a "donut" regression discontinuity design that excludes potentially
shifted births around July 1, 2004.

1In Appendix A we replicate the analysis of Gans and Leigh (2009) in our sample of South Australian birth records
from 1991 to 2005; our results could differ because hospital guidelines and maternity ward protocols differ by state,
and Gans and Leigh (2009) use data from several Australian states but not South Australia.
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Figure 1: Daily Number of Births in South Australia Within 30 Days of Thursday, July 1, 2004
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Note: This figure shows the number of daily births in South Australia between June 1, 2004,
and August 1, 2004. The blue horizontal line indicates the average daily number of births
over the period (47) and the red vertical line indicates the birth date eligibility threshold,
Thursday, July 1, 2004. The gray area represents births within seven days of the threshold,
which are excluded from our estimation sample.

4.2.2 Choice of donut design

We conduct several analyses to determine that seven days is the appropriate donut in our context.
Gans and Leigh (2009)’s original analysis and our replication indicate that the vast majority
of birth shifting took place within seven days of the birth date eligibility threshold. Because
of the day-of-the-week seasonalities in births, a seven-day donut ensures an even number of
week and weekend days around Thursday, July 1, 2004; a shorter donut or a slightly larger
donut could have caused a spurious imbalance on predetermined observable characteristics
between treatment and control groups. Last, we also use a data-driven method based on nested
nonparametric density tests (Cattaneo, Jansson and Ma, 2020) from which we also conclude that
a seven-day donut yields a sample of balanced pretreatment characteristics between treatment
and control groups, while ensuring a smooth density of births across the threshold. Our birth
records dataset do not allow us to estimate the optimal donut window following Jacobson,
Kogelnik and Royer (2021), because birth records start in 1999, which would only give us
a few years prior to July 1, 2004 to estimate flexibly the extent of birth shifting around that
date. However, we follow their advice to consider excluding all births up to 15 days around the
threshold. We show in Table B.8 that our results are remarkably robust to excluding all births
within 5, 8, 12, and 15 days from the threshold.
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4.3 Validity of the Regression Discontinuity Design with a Seven-Day "Donut"

Density of the Running Variable Figure 1 shows graphically that removing the light gray
central area removes the concerning window of births for identification; Figure B.2 shows
that after excluding births within seven days of July 1, 2004, there is no obvious change in
the distribution of the number of daily births over the remainder of the period 2002 to 2006.
Beyond graphical evidence, Table 1 presents the result of nonparametric density tests on the
running variable, which indicate that the running variable is smoothly distributed at the threshold
(Cattaneo, Jansson and Ma, 2020, 2018). Column (6) presents the p-value of each density test.
Across five out of six density tests, we cannot reject the null that there is not discontinuity in the

running variable at the threshold; in only one test do we find a marginally significant p-value.

Table 1: Results of Local Polynomial Density Test

Est. Bandwidth Observations Density Test

Estimation Method Left Right Left Right p-val.
ey ) 3) “4) (5) (6)
Models with symmetric bandwidth:

Restricted, linear 184 184 8,455 8,217 0.777

Restricted, 2nd-order polynomial 361 361 17,019 16,940 0.069

Unrestricted, linear 106 106 4,678 4,613 0.308

Unrestricted, 2nd-order polynomial 97 97 4,169 4,086 0.180
Models with asymmetric bandwidth:

Unrestricted, linear 114 166 5,059 7,348 0.325

Unrestricted, 2nd-order polynomial 73 117 2,990 5,114 0.156

Note: This table presents the results of three nonparametric density tests of the running variable around July 1, 2004.
We conduct Cattaneo, Jansson and Ma (2020)’s test using the Stata command rddensity (Cattaneo, Jansson and
Ma, 2018). Column (1) indicates the local polynomial fit method and the bandwidth estimation method. Columns
(2) and (3) indicate the estimated bandwidth on either side of the threshold (if applicable), and columns (4) and (5)
indicate the number of observations used in the test on either side of the threshold. Column (6) presents the p-value
of each density test comparing the distribution of births on each side of the threshold to a Gaussian approximation.
Large p-values indicate that the distribution of births on either side of the threshold are not statistically different
from one another. The sample used is the universe of children born in South Australia between July 1, 2003, and
July 1, 2005, excluding 93 children born abroad during this time, and all children born within seven days of July 1,
2004.

Table B.2 provides additional evidence on the continuity of the running variable at the threshold
based on binomial density tests that are used in the local randomization regression discontinuity
approach. We run 100 nested binomial density tests, in which we compare the number of births
from eight days on each side of the threshold to 107 days on each side of the threshold. Across
100 nested tests, we rejected the null at the 10% level only three times and at the 5% level
only once. Thus, we find overall strong evidence that the running variable is continuous at the

threshold in our seven-day donut design.
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Continuity of Predetermined Characteristics One could still be concerned about selection
bias arising from residual shifted births beyond our seven-day donut. The main endogeneity
concern with birth shifting is that either babies whose birth is postponed by one week are
healthier, which would lead to fewer hospital presentations in the first year of life, or they are
born with worse health conditions, which would lead to more hospital presentations in the first
year of life. However we show in Table 2 that control and treated babies are not statistically

different from one another in terms of pretreatment characteristics.

We perform 14 balancing tests on pretreatment observable characteristics of children and their
parents recorded in the perinatal data and birth records. We run our preferred specification
where outcome variables are the predetermined characteristics and bandwidths are optimally
chosen for each outcome (Cattaneo, Idrobo and Titiunik, 2019). We find precisely estimated
zero association for almost all predetermined characteristics. For only one predetermined
characteristic do we reject the null at the 10% level: we find that treated babies are 1 percentage
point more likely to be born to single mothers compared to control babies. Importantly, our
tests are high powered—we would be able to detect differences in the share of births to single
mothers between control and treated babies as small as 1.68 percentage point at the 1% level
(with 80% statistical power). Given the power of our tests, it is not surprising that we find this
marginally significant association. We show in Table B.8 that our results are robust to excluding

more observations close to the threshold where manipulation could, in principle, still occur.

Continuity of Birth Outcomes We present additional evidence in Table 3 that control and
treated babies do not differ in 11 distinct birth outcomes, especially birth outcomes which would
indicate endogenous postponing of births. We only find a small statistically significant imbalance
in the Apgar score at 1 minute (p = 0.092). One minute after birth, babies born just after the
birth date eligibility threshold are 1.9 percentage point less likely to have an Apgar score strictly
above 7 compared to control babies, amounting to a decline of 2.5% from the pre-threshold
mean in the optimal bandwidth. Five minutes after birth, we cannot detect any imbalances
in Apgar scores between control and treated babies suggesting that these discrepancies have
dissipated. Figure 2 provides supporting graphical evidence. These RD-plots provide graphical
evidence suggesting that babies in the control group are not systematically different from treated
babies based on six key characteristics associated with birth shifting and predictive of health
status in the first year of life: gestational age in weeks, whether the baby was born prematurely
(before 37 weeks), whether the baby required additional medical care (admitted to Special care

Nursery), Apgar scores at 1 and 5 minutes after birth, and birth weight in grams.

Placebo Outcomes around the Threshold in Prepolicy Years To provide further evidence on
the validity of our regression discontinuity design, Table 4 presents results on placebo outcomes
for births around July 1, 2002, and July 1, 2003, respectively, following Cattaneo, Idrobo and
Titiunik (2019) and used in e.g., Carneiro, Lgken and Salvanes (2015) and Borra et al. (2021).
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Table 2: Continuity of Predetermined Characteristics at the Threshold

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean
Left Right
(1) (2) (3) 4) ) (6) (7

Child and Parental Predetermined Characteristics:
Child is female 0.015 0.011 0.175 477 22,681 22,733 0.483
Birth in private hospital 0.012 0.013 0.334 387 18,366 18,187 0.341
No. of antenatal visits —0.056 0.09 0.535 325 14,058 13,840 10.682
Mother smokes 0.002 0.008 0.788 591 27,325 27,787 0.205
Mother’s age:

35+ —0.005 0.008 0.509 565 26,620 26,846 0.180

40+ —0.004 0.004 0.288 475 22,566 22,635 0.031
Father’s occupation:

High skilled 0.007 0.012 0.554 472 21,323 21,216 0.332

Low skilled 0.009 0.012 0.458 558 25,023 25,088 0.557
Mother’s marital status:

Never Married 0.011 0.006 0.077 620 29,180 29,639 0.117

Married —0.006 0.008 0.464 503 23,821 23,910 0.871

Single —0.004 0.003 0.115 425 20,117 20,039 0.013
Mother’s race:

Caucasian 0.001 0.006 0.915 509 24,082 24,150 0.908

Asian 0.003 0.004 0.531 571 26,895 27,117 0.046

Aboriginal or TSI —0.004 0.005 0.346 471 22,369 22,411 0.045

Note: This table presents the results of balancing tests on pretreatment characteristics of children and their parents
based on birth and perinatal records. Each line corresponds to a separate regression using our main specification.
We use local polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths
with standard errors clustered at the level of birth dates. We exclude 38 children born overseas in 2004 and all
births within seven days of July 1, 2004. The correlation between continuous Apgar scores at one and five minutes
