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Abstract

We estimate the impact on child health of the unanticipated introduction of the Australian

Baby Bonus, a one-time $3,000 unconditional cash transfer given at birth. With population-

level administrative data from South Australia and a regression discontinuity design, we

find that eligible infants had fewer hospital presentations by age one for preventable, acute,

and severe problems. Our auxiliary analyses using nationally-representative data suggest

that parents increased spending on food and groceries, experienced less financial stress and

hardship, and improved physical and mental health. We calculate that 34% of the payout

was recouped within the first year due to lower healthcare costs.
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1 Introduction

It is well established that poverty in early childhood has large negative consequences on edu-
cational attainment, labour market outcomes, health, criminality in adulthood, and longevity
(Almond and Currie, 2011; Almond, Currie and Duque, 2017, 2018). A key moment in a child’s
life when poverty is particularly harmful is at birth, a moment when parents experience a sharp
rise in stress that is only exacerbated by the intense financial pressures associated the arrival of a
newborn in the household. Unconditional cash transfers promise a simple way to alleviate those
financial pressures with little concern for take-up, albeit with large upfront public costs.

Several governments worldwide (e.g., Australia, Québec, Singapore, Spain, France, Poland)
have opted to pay baby bonuses, a one-off cash transfer offered to families at the birth of a child
with the aim of alleviating the perceived financial pressures of raising a child (Parr and Guest,
2011; McDonald, 2006a,b). Baby bonuses are administered through the tax and welfare system,
easy to adjust when needed, and easy to cancel in times of fiscal austerity. Their small scale
and one-off nature are not intended to change permanent income or life-cycle consumption,
saving, and investment behaviors. Yet a large enough one-off cash transfer can help overcome
the major initial expenses after the birth of child that could crowd out other expenditures. Baby
bonuses may improve children’s outcomes if parents spend the bonus on “child-centered goods
like books, quality day care or preschool programs, better dependent healthcare, or to move to a
better neighborhood” (Dahl and Lochner, 2012, p. 1931). Yet, these transfers also entail the
risk that parents use the cash to consume nonessential or even risky goods that may result in
unintended negative externalities for children (Currie and Gahvari, 2008).

In this paper, we estimate the effect of family income at birth on child health care utilization
and child health in early childhood. Our setting offers a unique opportunity to implement a
highly credible research design using detailed population-level hospital records on child health
along with detailed parental behaviors as mechanisms. To answer our research question, we
estimate regression discontinuity models of the effect of being born just before versus just after
the implementation of the Australian Baby Bonus (ABB)—an unconditional cash transfer paid
at birth—on children’s health care utilization and health status in the first five years of life.
We use population-level perinatal records, birth records, emergency department and inpatient
services records in all public hospitals in South Australia. Our data are exceptionally rich and
allow us to analyze the entire spectrum of presenting problems for children from birth onward.
They allow us to identify longitudinally and in depth the nature of the hospitalization down to
the diagnosis, the urgency and severity of the health problem, and whether the presentation was
planned, such as with a referral or for elective care.1

1This level of detail allows us to distinguish between areas of health that can be affected directly by a windfall
cash payment (e.g., money spent on extra health care to treat a preexisting condition, which is not fully covered
by universal health care), or indirectly (e.g., money spent on alcohol, which increases trauma presentations at the
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The Baby Bonus was an unconditional cash transfer initially amounting to $3,0002 (US$2,400),
a small yet economically meaningful windfall income for families at a time when Australia was
the only OECD country other than the United States without paid parental leave legislation. It
represented 2.5 times the weekly median disposable household income in 2004 and 5.3 times
the weekly disposable household income of families in the lowest income decile. The Baby
Bonus was discontinued in 2014, shortly after the introduction of paid parental leave. Almost
all eligible households (over 95%) claimed the payment (see Drago et al., 2011, p. 383) and
received it within 14 days of the birth of the child. For identification, we exploit the unexpected
introduction of the Baby Bonus shortly before its implementation on July 1, 2004, which is also
the birth date eligibility threshold.

We find that the Baby Bonus led to a decline of 0.098 standard deviations in our index of health
care utilization for treated babies in their first year of life—an economically meaningful effect
in a country with universal access to health care and a high standard of living. Our main finding
also suggests that the Baby Bonus led to improvements in the health status of treated babies
because our index captures presentations for urgent, acute, and severe problems. In particular,
we show that the overall decline in health care utilization is driven by a decline in presentations
for urgent, acute, and severe problems that require hospital admissions and overnight stays. This
finding is important because it is unbiased by parental sorting because those outcomes are not
substituable by out-of-hospital care and are free of charge for all Australian residents.

Our findings are robust to several sensitivity checks, with our main estimate ranging from -0.05
to -0.31 and averaging at -0.11 standard deviations in health care utilization. Our preferred
specification excludes all births within seven days of the birth date eligibility threshold to address
identification concerns related to birth shifting.3 Our results are robust to using alternative donuts
(from 5 to 15 days), using alternative data-driven optimal-bandwidths (CER-, MSE-, asymmetric
CER- and half CER-optimal bandwidths) and researcher-chosen bandwidths (60- and 90-day
bandwidths), considering selective pregnancy terminations, conducting permutation tests with
placebo thresholds (+/– 90 days) and placebo years prior to the policy, as well as multiple
hypothesis testing corrections for the familywise error rate (Romano and Wolf, 2005a,b, 2016;
Holm, 1979), and to alternative ways of clustering standard errors across both MSE- and
CER-optimal bandwidths.

Back-of-the-envelope calculations indicate that the Baby Bonus represented a large return on
investment due to reduced hospital care utilization. We find that 34% of the initial payout of the

emergency department).
2All amounts are in Australian dollars unless otherwise noted.
3See Section 4 and additional details in Appendix A). Our results are robust to using the 15-day donut recommended
by Jacobson, Kogelnik and Royer (2021) for settings where births can be shifted both before and after the threshold
(although setting like ours, as noted by Jacobson, Kogelnik and Royer (2021), the financial incentives tied to the
birth date eligibility threshold of the cash payment create no incentives for parents to shift a birth earlier)
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Australian Baby Bonus was recouped in the first year of life of eligible children. Positive income
shocks early in life may reduce the economic burden to society through medical expenditure
savings in the longer run. Our estimates also likely underestimate the true return on investment
of the Baby Bonus because our calculations are based on hospitalizations for severe, acute, and
urgent problems, and do not include less severe, but still costly, presentations. Better calculations
in the future should also consider improvements along the entire spectrum of health problems,
using for example, Medicare expenditures or primary care data, and consider dynamic effects at
later ages.4

We explore the two categories of mechanisms hypothesized in past literature: the “resources
channel”—the direct impact of additional income that allows carers to purchase more goods and
services—and the “family process channel”—the indirect impact of income on the psychological
well-being of the family, which allows parents to spend more time with children in productive
activities (Mayer, 1997; Yeung, Linver and Brooks-Gunn, 2002; Milligan and Stabile, 2011).
We show evidence of both mechanisms at play using our population-level administrative records
and additionally using supplementary data from the Household, Income and Labour Dynamics
in Australia (HILDA), Australia’s nationally-representative longitudinal household survey. The
HILDA offers unique measures of household expenditures, financial stress and hardship, along
with detailed measures of parental subjective physical and mental health, marital relationships,
labor supply and child care intentions. Although our sample size is small, we find suggestive
evidence supporting both the “resources channel” and the "family process channel". First, the
Baby Bonus allowed families to increase expenditures on food and groceries and decreased the
incidence of financial stress and financial hardship (resources channel).

Second, our findings using administrative records suggest that the Baby Bonus allowed parents to
invest more in preventive health. We show that our main result is driven by a reduction in hospital
presentations deemed "potentially preventable" by a doctor, in particular acute bronchiolitis, a
respiratory health problem that is the most common type of potentially preventable pediatric
presentation for infants and that can cause asthma in older children. To perform this analysis,
we exploit a unique feature of our hospital records, which associates a binary indicator for a
"potentially preventable pediatric problem" to each diagnosis code included in each presentation
record. This indicator marks hospital presentations that a medical doctor deemed preventable
if parents had taken appropriate actions, that is, parental behaviors that should have prevented
babies’ conditions from becoming acute or severe and thus preventing hospital presentations
for those problems. Typically the indicator is positive for vaccine-preventable conditions, acute
conditions, and chronic conditions that parents could have prevented with appropriate use of

4For example through early detection and prevention of respiratory problems. There is recent evidence that wheezing
episodes early in life with the common cold virus is a major risk factor for the later diagnosis of asthma at age six.
Children with asthma are at high risk of developing complications later in life and are therefore in need of acute
care (see Busse, Lemanske Jr. and Gern (2010) for an overview).
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primary care. In addition, the magnitude of our effects is larger for children from disadvantaged
backgrounds, which is consistent with the Baby Bonus alleviating income constraints. Finally,
using the HILDA, we find that the Baby Bonus increased marital stability and improved parental
self-assessed physical and mental health; we also find suggestive evidence of an increase in
child care use for older children in the family but no discernible impact on maternal intended
labor supply. Our findings combined suggest that parental investments play an important role in
explaining the decline in health care utilization and the increase in health status of infants as a
result of the introduction of the Baby Bonus.

This paper contributes to a strand of literature focused on baby bonus policies, which has largely
centered on birth shifting as an unintended consequence of financial incentives associated with
baby bonuses. Yet, surprisingly little is known about the impact of baby bonuses on children’s
health outcomes and their parents’ responses. With the exception of Borra et al. (2021), past
studies have paid little attention to the impact of receiving those payments on children’s human
and health capital, but have instead focused much attention on birth manipulation induced by
financial incentives. Most of the evidence on baby bonus policies originates from the Spanish
and Australian experiences. The main findings of this literature are that baby bonus policies can
i) cause small increases in fertility (through abortions and conceptions) (Sinclair, Boymal and
De Silva, 2012; González, 2013; González and Trommlerová, 2021) and childbearing intentions,
especially for women from lower-income households (Risse, 2010); ii) allow mothers to stay
home longer after the birth of a child (González, 2013); and iii) have none to modest medium-
term impacts on children’s human capital formation, especially for children from disadvantaged
backgrounds (Deutscher and Breunig, 2018; Borra et al., 2021). The bulk of the literature has
focused on the unintended consequences of announcing the introduction of baby bonus policies
(Gans and Leigh, 2009), their cancellation (Borra, González and Sevilla, 2016, 2019), or both
(González and Trommlerová, 2021). Borra, González and Sevilla (2019) provide the first and
only evidence that birth shifting induced by the cancellation of the Sapnish baby bonus led
to worse health outcomes for shifted infants. The announcement of a birth threshold date for
eligibility for the payment creates small incentives for parents to shift the birth date of a baby in
utero, potentially harming the unborn child. Parents may gain from advancing the date of a birth
by induction to benefit from a cash transfer before its cancellation date, or from postponing the
date of a birth to become eligible for a cash transfer before its implementation date. Importantly
however, while it is relatively easy to advance the date of a birth by induction, it is not so easy to
postpone the birth of a child. This feature of our natural experiment allows us exclude shifted
births and to focus on the impact of the cash injection alone on child health outcomes and their
parents’ responses.5 To the best of our knowledge, no other study has focused on estimating the

5While Gans and Leigh (2009) show that some birth shifting occurred with the introduction of the Australian Baby
Bonus, Deutscher and Breunig (2018) find precisely estimated no impact of birth shifting itself on children’s health
or educational outcomes in Australia.
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impact of baby bonuses on children’s health outcomes and to study parental behavioral change
as mechanisms.

This study also contributes to the growing consensus that social safety nets and social programs
in general and cash injections in particular should be viewed as an investment in children that
have large positive returns (Bailey et al., 2020; Hoynes and Schanzenbach, 2018; Hoynes,
Schanzenbach and Almond, 2016; Aizer, Hoynes and Lleras-Muney, 2022). Our findings
contribute to a long-standing literature on the effectiveness of government social assistance,
which has shifted its focus in recent years to investigate the impact of social programs on
children’s birth outcomes, health, human capital, and well-being into adulthood (Aizer et al.,
2016; Barr, Eggleston and Smith, 2022). This newer evidence concerns baby bonus payments
(Deutscher and Breunig, 2018; González, 2013; Borra et al., 2021; Cygan-Rehm and Karbownik,
2022), earned-income tax credits and cash transfers (Hoynes, Miller and Simon, 2015; Hoynes,
Schanzenbach and Almond, 2016; Dahl and Lochner, 2012; Currie and Almond, 2011; Milligan
and Stabile, 2011; Duncan, Morris and Rodrigues, 2011; Amarante et al., 2016; Barr, Eggleston
and Smith, 2022), nutritional assistance programs (Almond, Hoynes and Schanzenbach, 2011;
East, 2020; Barr and Smith, 2023) and paid maternity leave (Baker and Milligan, 2010; Rossin,
2011; Dustmann and Schönberg, 2012; Carneiro, Løken and Salvanes, 2015) among others. In
particular, Barr, Eggleston and Smith (2022) shows that small cash injections at birth increase
adult earnings by up to 2%, but this study is limited in the number of mechanisms it can explore.
Our study is unique in providing evidence on how parental investments in response to cash
transfers can play a major role in generating positive returns to cash transfer policies.

More generally, this study also contributes to improving our understanding of the channels
through which household income matters for children’s health and human capital outcomes
(Currie and Almond, 2011; Almond, Currie and Duque, 2018; Cesarini et al., 2016; Kuehnle,
2014; Currie, 2009; Case, Lee and Paxson, 2008; Currie, Shields and Price, 2007; Propper, Rigg
and Burgess, 2007; Currie and Stabile, 2003; Case, Lubotsky and Paxson, 2002; Yeung, Linver
and Brooks-Gunn, 2002). Identifying the causal impact of household income on children’s health
has been difficult because few compelling randomization experiments exist, with the exception of
the ongoing “Baby’s First Years” randomized control trial (see e.g., Noble et al., 2021). Previous
credible evaluations have exploited lottery winnings (Cesarini et al., 2016), instrumental variable
approaches (Kuehnle, 2014) or natural experiments, such as welfare expansions (Duncan, Morris
and Rodrigues, 2011), Earned Income Tax Credit expansions in the United States (see e.g.,
Hoynes, Miller and Simon, 2015; Dahl and Lochner, 2012), tax benefits such as the Canada
Child Tax Benefit (Milligan and Stabile, 2011), and even casino windfalls (Akee et al., 2010).
This strand of literature focuses on large shocks to household income that are more permanent
in nature, which often affect working parents; surprisingly few studies focus on the impact of a
small one-off unconditional cash transfer that do not change permanent income but simply buffer
short-term financial stress. Jacob et al. (2022) and Pilkauskas et al. (2022) are two particularly
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relevant studies that investigate in-depths responses of disadvantaged households to a short-run
cash injection in the United States during the COVID-19 crisis. Both studies find only suggestive
evidence regarding material hardship and mental health. In contrast, our findings on child health
and mechanisms indicate that even a small, one-off, and unconditional payment can have a
meaningful impact on child health and their parents.

2 Institutional Background

The Australian Baby Bonus was an $3,000 unconditional and nontaxable lump sum offered to
parents for each birth (or adoption of a child under two years) on or after July 1, 2004. The
Australian Government announced it on May 11, 2004 in the new budget—just a short time
period before its implementation. The primary intention of the policy was to boost fertility by
absorbing part of the (perceived) costs associated with the birth of a child. The introduction
of the Baby Bonus can therefore be seen as a natural experiment for all births between July
2004 and December 2004. A short period of less than seven weeks between announcement and
implementation left no room for a fertility response in the short run.6

The Baby Bonus was atypical and of much broader scope than previous policies. First, it was not
means tested. Any family who had a newborn baby received the bonus independent of family
size or parental employment status. Second, the cash benefit was a sizeable amount of money,
especially for families living on low incomes. The lump sum was 2.5 times the weekly median
disposable household income of households with a newborn in 2004, or 5.3 times the weekly
disposable household income of families in the lowest income decile. Overall, the Baby Bonus
represented a one-time increase in the median disposable household income for families who
had a baby born in 2004 of almost 5%.7

Between its introduction and abolition on March 1, 2014, the program underwent important
structural changes, which included subsequent increases to $4,000 and $5,000 on July 1, 2006
and July 1, 2008, respectively. As of 2009, it became means-tested and thus from this point
forward only accessible to families with incomes of $75,000 or less in the six months following
the birth or adoption of a child. Additionally, from 2008, parents under 18 would receive
the Baby Bonus in 13 fortnightly installments instead of an up-front payment, and it was
progressively rolled out to the entire population.

6The reason is that babies born on or after July 1, 2004, were in utero on the day of announcement. The first babies
conceived after May 11, 2004 in response to the announcement could not have been born before February 2005,
assuming full-term gestation of 37 weeks and over.

7Own calculations based on Wave 4 of the Household, Income, and Labor Dynamics in Australia survey. The
median disposable household income for families who had a newborn between January and December 2004 was
$61,663 ($1,186 per week). The mean household disposable income for households in the bottom decile of the
income distribution was $29,661 ($570 per week). The sample comprises 142 out of 161 households that had a
newborn in 2004 and were interviewed in Wave 4 of HILDA.

6



Importantly, the Baby Bonus was introduced at a time when Australia was one of two OECD
countries that had not yet legislated a compulsory parental leave payment scheme. This legisla-
tion was introduced as a further commitment to supporting families in 2011, in the form of the
national Paid Parental Leave program. The scheme offered up to 18 weeks’ pay at the minimum
wage, a much larger support than the Baby Bonus for eligible families.

The Baby Bonus replaced two family benefits, the Maternity Allowance and the First Child
Tax Refund (also referred to as the “Baby Bonus” at the time). Therefore, the Baby Bonus
did not represent a net increase of $3,000 for all households (Deutscher and Breunig, 2018).
The Maternity Allowance was a subsidy of $843 per child as part of the Family Tax Benefits
(FTB) available to mothers with modest incomes. The First Child Tax Refund was introduced
for babies born on or after July 1, 2002. It allowed mothers leaving the workforce to claim
income taxes paid in the year prior to the birth of the first child born between July 1, 2001
and June 30, 2004 (not necessarily the first-born child in the family). The amount was paid
back over a five-year period (i.e., some mothers received money back until 2009). If mothers
were returning to work prior to the fifth birthday of the child, the payable amount would be
reduced proportionally to the income earned. This subsidy, which was much more generous
to women with higher incomes, had low utilization rates probably because of its complex and
delayed tax refund scheme (Drago et al., 2011; Gans and Leigh, 2009). In stark contrast, the
Baby Bonus was administratively simple and low-cost to obtain. To acquire the benefit, parents
needed to lodge their claim within 26 weeks of the birth. Our own calculations using social
security payments confirm previous findings that almost all eligible households (over 95%)
received the payment (see Drago et al., 2011, p. 383). The median household received the
payment within 14 days of the birth of the child, while 90% received it within 49 days. Thus,
the payment was immediately effective. In relative terms, the policy was more favorable to low-
and middle-income households. According to Deutscher and Breunig (2018), 75% families with
babies born in June 2004 would have been financially better off under the new policy had it been
in effect at that time.

The effect of the Baby Bonus on children’s health outcomes must be understood in the context
of Australia’s health care system and its funding arrangements. Australia is a healthy, rich,
and highly developed country with an advanced health care system that ranks high amongst
OECD countries. Average life expectancy is high (82.6 years) and infant mortality (0.33%)
is low in comparison to other OECD countries (OECD 2019). Australia has universal health
insurance, under which 100% of the resident population has access to core services and medi-
cation. The Medicare program, implemented in 1984, is tax-funded. It has three major parts:
medical services, public hospitals, and prescriptions. It covers the expenses of public hospital
services (free treatment for patients in public hospitals) and visits to general physicians. The
“Pharmaceutical Benefits Scheme” provides subsidies for a variety of prescription medicines.
Hence, the fundamental structure of the hospital and medical services has been established in a
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way to provide essential healthcare services to all Australians without experiencing financial
hardship (Rana, Alam and Gow, 2020). Although dental or other ancillary services are not
covered, children are fully covered under Medicare as well and receive additional free services
regarding dental care, immunizations, disability, autism, and vision impairment.8

3 Data

3.1 The South Australian Early Childhood Data Project

We conduct the analysis with linked administrative data from the South Australian Early Child-
hood Data Project (SA ECDP), which is one of the most comprehensive population-based
administrative research databases on children and families in Australia. It brings together
more than 30 different government administrative data sources spanning every cohort of South
Australian children born between 1999 and 2013 (see Nuske et al. (2016) for details).

Birth and Perinatal Data We obtain birth-related data from the Born Population dataset, a
merge of the Births Register and the South Australian Perinatal Statistics Collection covering
the universe of children born in South Australia between 1991 and 2016. Available variables
include date of birth, gestation length at birth, child sex, birth weight, and several indicators of
the child’s health at birth such as APGAR scores and admissions to neonatal intensive care units.
The data also contain detailed demographic characteristics of mothers, fathers, and children, as
well as detailed pregnancy histories of mothers (including maternal gestational health, smoking
behavior during pregnancy, and past pregnancies). These data are primarily sourced from the
Perinatal Statistics Collection and supplemented and validated by Births Registry data.

Hospital Records: Inpatient Services and Emergency Department Admissions Health
outcome measures are derived from the Integrated South Australian Activity Collection (ISAAC)
and the South Australian Emergency Department Data Collection (EDDC). The ISAAC data
cover the universe of admissions to inpatient services (IS) in public hospitals from July 2001
to 2014. The EDDC data cover the universe of admissions to emergency departments (ED)
in public hospitals from July 2003 to 2014 (Nuske et al., 2016; South Australian Emergency
Department Activity Data Standards, Government of South Australia, 2014). Both datasets
contain details about each patient’s admission, including their mode of transport to the hospital,
whether they came with a referral, whether the visit was planned, whether it is a first admission,

8For more details, see https://www.servicesaustralia.gov.au/individuals/subjects/
whos-covered-medicare/childrens-health-care. Australia also has a market for private health in-
surance. Individuals are encouraged through the tax system and premium rebates by the government to purchase
private health insurance. The main aim of public subsidies to purchase health insurance is to relieve pressure from
the overburdened public hospital system, an aim that is generally accepted as not having been achieved (Rana,
Alam and Gow, 2020).
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the severity of the patient’s condition as assessed by a triage nurse, and diagnosis code(s) and
other clinical indicators associated with the admission, length of stay, and the nature of the
separation (discharge, admission, transfer, death). The data are collected by hospital staff and
updated at the time of hospital separation.

3.2 Data Limitations

The administrative records used in this paper present both advantages and disadvantages. A first
concern is that by focusing on inpatient services and emergency care, we only observe censored
health outcomes due to selection into hospital care. Ideally we would have both health measures
capturing underlying health status and additional measures capturing access to hospital care.
To limit the risk that selection would bias our conclusions, we focus on acute and potentially
acute health conditions leading to presentations at emergency departments or inpatient services
through an emergency department admission. For those outcomes it is extremely unlikely that
parents would use primary care before presenting to emergency care. We discuss our outcome
variables in detail below and further discuss selection concerns in Section 7.2.

A second concern is that we only use public hospital records, which might also provide a partial
picture due to selection into public versus private hospital care sectors. In 2004, South Australia
had 99 hospitals, of which 76 were public and 23 were private, including 18 that shared an
emergency department with a sister public hospital. Importantly, young children are rarely
treated in private hospitals in Australia: emergency care for children is almost exclusively
provided in public hospitals. Around the time the Baby Bonus was implemented, private patient
infants (age 0–4) made up around 1.5% of all hospital separations (AIHW 2017, Figure 4.2),
and there was no child with private health insurance admitted to a private hospital for emergency
surgery in this age group (AIHW 2017, Figure 7.1).

3.3 Outcomes and Variables of Interest

In this paper we want to estimate the impact of the Baby Bonus on infant hospital health and
parental investments in child health. In the absence of unambiguous measures of child health
status, we construct a measure of the severity in infant health problems as a summary index of
health care utilization for infants derived from hospital records.9

This index sums up hospital presentations for babies from birth until age 1 excluding birth-
related problems.10. The summation proxies health care need and therefore health issues that

9Measuring infant health beyond birth outcomes is more complex than measuring health for adults. The literature on
the health production function for infants acknowledges this difficulty. Most commonly, infant health is based on
proxies for morbidity such as diagnoses or health care utilization including hospitalization. See Corman, Dave and
Reichman (2018) for a review of this literature.

10We also construct an analog index for presentations in each subsequent year of life until age 5, e.g., from age 1
until age 2, from age 2 until age 3, etc.
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require care. We add up binary indicators for each hospital care visit: (1) emergency department
only presentations; (2) inpatient services (without ED) presentations; (3) combined emergency
department presentations and admission to inpatient services. To give more weight to presenta-
tions with greater health severity, we added counts of presentations at emergency department
and inpatient services that were recorded as urgent, acute, or preventable, or presentations that
required an overnight stay.11 Table B.1 reports the full list of items that entered the index.12

This summary measure is, thus, increasing in health care use intensity and severity. To be able
to interpret easily our index–higher values on the index indicate more severe health problems
and more needs for hospital care–, we deliberately exclude health care visits for electives
procedures or presentations with referrals because those are more likely to represent parental
health investments to improve a pre-existing health condition. In further analyses, we consider
each item separately as outcome variable and also present results regarding presentations for
elective procedures and presentations with referral. We standardise this index measure to mean
0 and standard deviation 1 for all babies born between 1991 and 2016 to avoid taking a stand at
this stage on the appropriate bandwidth to use in our empirical analyses.

Beyond our index of health care utilization, we also consider two additional sets of outcomes
that proxy parental investments in child health. First, we construct three additional outcomes that
require parental planning and additional co-payments (only available in the inpatient services
records) : i) having a planned or scheduled visit; ii) having a presentation with referral for
specialist care; and iii) having a record for an elective intervention. Second, we characterize
in detail the type of presenting problem at inpatient services and at the emergency department
of our infant patients. For inpatient records, we use diagnosis codes based on the International
Statistical Classification of Diseases and Related Health Problems (ICD-10-AM), from which we
extract the broad categories of presenting problem.13 For emergency department records, we can
distinguish admissions by presenting problem and diagnosis group according to two different

11Urgent and Acute as recorded by a triage nurse at the emergency department upon presentation, or by a doctor at
the emergency department of inpatient service upon discharge. Preventable is defined as “potentially preventable
pediatric” (PPP) presentations. These items are recorded in alignment with the Potentially Avoidable Hospitalization
(PAH) tool, a classification system developed in New Zealand for infants to flag health care use that could have
been avoided. This classification system is based on a broad spectrum of factors influencing health, in particular
appropriate access to primary care (see Anderson et al. (2012) for a description). For instance, a child could be
admitted for bronchiolitis, the first cause for emergency department visits for babies in their first year of life, but
they could be admitted for a “potentially preventable” bronchiolitis depending on the severity of the symptoms
and whether doctors consider that parents should have presented the child to a general practitioner (GP) before the
bronchiolitis became acute. Potentially preventable hospitalizations typically cover vaccine-preventable conditions,
acute conditions, and chronic conditions that parents could have prevented with appropriate primary care. Our
index aggregates all our binary outcomes associated with hospital presentations for acute or severe problems.

12Using factor analysis to build our index yielded one strong first factor and similar factor loadings across items; the
resulting index presented a strong Cronbach alpha of 0.86, with comparable and strong item-rest correlations across
items. However, the continuous index presented large lumps for children with no presentations. For this reason, we
preferred to construct on a summative scale.

13See International Classification of Diseases, 10th edition, Australian Modification (ICD-10-AM 10th Edition)
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sources: triage nurses upon presentation and medical doctor upon inspection or separation.
Triage nurses classify the presenting patient according to the presenting problem (for instance,
respiratory, head trauma), coded as broad categories that are consistent with diagnosis sub-
categories based on the ICD-10-AM. Upon inspection and separation, medical doctors update
the records to classify presentations into diagnosis codes, which determine how the hospital will
be reimbursed after separation. Each diagnosis is coded according to the ICD-10-AM. As both
sources of information have advantages and disadvantages, we consider both in the analysis.
We focus our analysis on the most common diagnoses, problems, or complaints for young
children and infants which include in this order i) respiratory problems, ii) digestive problems,
iii) infections, iv) skin problems, v) injuries, trauma, and poisoning, and vi) externally caused
health problems (generally accidents). For each presenting problem, we construct a summative
scale consisting of three dummies, one for whether an ED triage nurse classified a presentation
as presenting this problem, and another two dummies for whether an emergency department
doctor or a doctor at an inpatient service recorded a diagnosis associated with the presentation.

3.4 Summary Statistics

Table B.1 presents summary statistics on the health care summary index and the 11 individual
items which define the index in the first year of life of all babies born in South Australia between
July 1, 2003 and July 1, 2005. For this population (N = 35,236 babies), the average health index
is 0.183 and the standard deviation (SD) is 0.16. 45% of children have at least one presentation
within their first year of life, 32% have at least one presentation at the ED, and 30% have at
least one inpatient service. One in five children has at least one presentation to the ED for an
urgent or acute problem, one in eight has a presentation that led to a hospital admission, and of
these, one in five stays overnight. Other types of visits are rarer: planned visits (1.7% at EDs
and 2.4% at inpatient services), visits with a medical referral (5% at EDs and 9% at inpatient
services), and visits for an elective procedure (5.7% in inpatient services). Overall, more than
one in five children had a presentation that was potentially preventable, amounting to 19% of
ED presentations and 9.4% of inpatient service presentations. Figure B.1 presents histograms of
those different outcomes.

4 Empirical Strategy

4.1 Regression Discontinuity Design

The introduction of the Australian Baby Bonus on July 1, 2004, seems to naturally lend itself to
a sharp regression discontinuity design. No babies born before July 1, 2004, received the Baby
Bonus, while over 95% of all babies born after the birth date eligibility threshold received it. We
exploit the sharp change in eligibility for the Baby Bonus based on dates of birth to evaluate the
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causal impact of the Baby Bonus on health outcomes of children in their first years of life. We
compare the health outcomes of children born just before versus after July 1, 2004, by estimating
the following equation for a child i with health Yi upon reaching age 1 (or age 2, 3, 4, or 5):

Yi = α +βDi + γg(Ri)+ εi, (1)

where Di is a dummy variable taking value 1 if the child is born on or after July 1, 2004, and 0
otherwise; Ri is the running variable corresponding to the child’s date of birth centered around
the birth date eligibility threshold, and g(.) is a linear function of the child’s date of birth. Thus,
β is our parameter of interest capturing the difference in health outcome Yi between treated and
control babies.

We estimate equation (1) using local linear estimation and robust bias-corrected inference
methods with CER-optimal bandwidth (Calonico, Cattaneo and Titiunik, 2014b; Calonico,
Cattaneo and Farrell, 2018, 2020; Calonico et al., 2019).14 We choose local linear estimation
with a triangular kernel to give more weight to observations closest to the threshold, following
Gelman and Imbens (2019), who warn against the use of global high-order polynomials because
those often give too much weight to observations away from the threshold and bias estimates
at the threshold. We use robust bias-corrected inference that are robust to bias arising from
nonlinear conditional expectation functions of outcomes near the threshold (Calonico, Cattaneo
and Titiunik, 2014b).

Calonico, Cattaneo and Farrell (2020) argue that the MSE-optimal bandwidth is optimal for point
estimation and the CER-optimal bandwidth is optimal for inference purposes. Our preferred
specification focuses on the CER-optimal bandwidth in this context because the MSE-optimal
bandwidth is larger, and could potentially include babies born in different seasons which could
affect their health care needs in the first year of life. Table B.10 indicates that our main effects
on health care utilization and its subitems are robust to alternative choices of bandwidths, and
Section 7.1.4 presents falsification exercises regarding seasonalities.

Last, even though our running variable is discrete, we cluster standard errors at the level of birth
dates in our preferred specification following Bartalotti and Brummet (2017) and Abadie et al.
(2020, 2017). They recommend clustering at the experimental level in settings such as ours
where treatment assignment is correlated within clusters. Nonetheless, we show in Table B.7
that this choice of clustering standard errors does not affect our conclusions (under either MSE-
and CER-optimal bandwidths).15

14We use the rdrobust Stata command (Calonico, Cattaneo and Titiunik, 2014a; Calonico et al., 2017, January
2020 update).

15We also perform all our validity checks and analyses under a parametric specification following Lee and Card
(2008) and find similar results that are available upon request.

12



4.2 Birth Shifting and Regression Discontinuity "Donut" Design

Our main parameter of interest yields a causal estimate of the true effect of the Baby Bonus
on the health outcomes of babies if two assumptions hold: i) there is no manipulation in the
running variable determining assignment to treatment and control groups, and ii) there are no
significant differences between control and treatment babies at baseline.

4.2.1 Evidence on birth shifting

Previous studies have suggested that baby bonus policies create incentives for parents to shift
their child’s birth (see in particular Borra, González and Sevilla, 2016, 2019; Gans and Leigh,
2009). The Australian government announced the introduction of the Baby Bonus on May
12, 2004, only seven weeks prior to July 1, 2004, which could not lead to immediate concep-
tion effects at the threshold, and did not lead to selective abortions (see Section 7). Yet the
announcement period did allow some families to shift the birth of their baby.

Figure 1 presents the number of daily births in South Australia within 30 days around July 1,
2004. This figure indicates common birth seasonalities: we see peaks on weekdays, when most
births take place, and valleys on weekends, when few births take place. July 1, 2004, was a
Thursday, so we would expect a peak on this day, but the peak is even higher than we should
expect. The three points immediately before July 1, 2004, are also weekdays, but we clearly see
fewer births occurring on those days. The third and fourth points to the right of the threshold are
Saturday and Sunday, which is why birth shifting falls from there onward.

We confirm in our sample the key finding from Gans and Leigh (2009) that birth shifting was
highly concentrated in the days immediately surrounding the birth date eligibility threshold of
July 1, 2004.16 We calculate that 49 births were potentially shifted from the last week of June to
the first week of July, corresponding to 14% of all births expected in the last week of June, or
about 2 standard deviations of the average weekly birth variation that South Australian maternity
wards have experienced in the previous five years. With 40 maternity wards in South Australia,
this means that about every sixth maternity ward would have had one additional birth per day.
Although this can hardly be considered a substantial disruption of daily processes in maternity
wards, it does however suggest that babies born at a later date were potentially healthier than
nonshifted babies (who stayed in the control group).

We therefore implement a "donut" regression discontinuity design that excludes potentially
shifted births around July 1, 2004.

16In Appendix A we replicate the analysis of Gans and Leigh (2009) in our sample of South Australian birth records
from 1991 to 2005; our results could differ because hospital guidelines and maternity ward protocols differ by state,
and Gans and Leigh (2009) use data from several Australian states but not South Australia.

13



Figure 1: Daily Number of Births in South Australia Within 30 Days of Thursday, July 1, 2004
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Note: This figure shows the number of daily births in South Australia between June 1, 2004,
and August 1, 2004. The blue horizontal line indicates the average daily number of births
over the period (47) and the red vertical line indicates the birth date eligibility threshold,
Thursday, July 1, 2004. The gray area represents births within seven days of the threshold,
which are excluded from our estimation sample.

4.2.2 Choice of donut design

We conduct several analyses to determine that seven days is the appropriate donut in our context.
Gans and Leigh (2009)’s original analysis and our replication indicate that the vast majority
of birth shifting took place within seven days of the birth date eligibility threshold. Because
of the day-of-the-week seasonalities in births, a seven-day donut ensures an even number of
week and weekend days around Thursday, July 1, 2004; a shorter donut or a slightly larger
donut could have caused a spurious imbalance on predetermined observable characteristics
between treatment and control groups. Last, we also use a data-driven method based on nested
nonparametric density tests (Cattaneo, Jansson and Ma, 2020) from which we also conclude that
a seven-day donut yields a sample of balanced pretreatment characteristics between treatment
and control groups, while ensuring a smooth density of births across the threshold. Our birth
records dataset do not allow us to estimate the optimal donut window following Jacobson,
Kogelnik and Royer (2021), because birth records start in 1999, which would only give us
a few years prior to July 1, 2004 to estimate flexibly the extent of birth shifting around that
date. However, we follow their advice to consider excluding all births up to 15 days around the
threshold. We show in Table B.8 that our results are remarkably robust to excluding all births
within 5, 8, 12, and 15 days from the threshold.
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4.3 Validity of the Regression Discontinuity Design with a Seven-Day "Donut"

Density of the Running Variable Figure 1 shows graphically that removing the light gray
central area removes the concerning window of births for identification; Figure B.2 shows
that after excluding births within seven days of July 1, 2004, there is no obvious change in
the distribution of the number of daily births over the remainder of the period 2002 to 2006.
Beyond graphical evidence, Table 1 presents the result of nonparametric density tests on the
running variable, which indicate that the running variable is smoothly distributed at the threshold
(Cattaneo, Jansson and Ma, 2020, 2018). Column (6) presents the p-value of each density test.
Across five out of six density tests, we cannot reject the null that there is not discontinuity in the
running variable at the threshold; in only one test do we find a marginally significant p-value.

Table 1: Results of Local Polynomial Density Test

Est. Bandwidth Observations Density Test

Estimation Method Left Right Left Right p-val.
(1) (2) (3) (4) (5) (6)

Models with symmetric bandwidth:
Restricted, linear 184 184 8,455 8,217 0.777
Restricted, 2nd-order polynomial 361 361 17,019 16,940 0.069
Unrestricted, linear 106 106 4,678 4,613 0.308
Unrestricted, 2nd-order polynomial 97 97 4,169 4,086 0.180

Models with asymmetric bandwidth:
Unrestricted, linear 114 166 5,059 7,348 0.325
Unrestricted, 2nd-order polynomial 73 117 2,990 5,114 0.156

Note: This table presents the results of three nonparametric density tests of the running variable around July 1, 2004.
We conduct Cattaneo, Jansson and Ma (2020)’s test using the Stata command rddensity (Cattaneo, Jansson and
Ma, 2018). Column (1) indicates the local polynomial fit method and the bandwidth estimation method. Columns
(2) and (3) indicate the estimated bandwidth on either side of the threshold (if applicable), and columns (4) and (5)
indicate the number of observations used in the test on either side of the threshold. Column (6) presents the p-value
of each density test comparing the distribution of births on each side of the threshold to a Gaussian approximation.
Large p-values indicate that the distribution of births on either side of the threshold are not statistically different
from one another. The sample used is the universe of children born in South Australia between July 1, 2003, and
July 1, 2005, excluding 93 children born abroad during this time, and all children born within seven days of July 1,
2004.

Table B.2 provides additional evidence on the continuity of the running variable at the threshold
based on binomial density tests that are used in the local randomization regression discontinuity
approach. We run 100 nested binomial density tests, in which we compare the number of births
from eight days on each side of the threshold to 107 days on each side of the threshold. Across
100 nested tests, we rejected the null at the 10% level only three times and at the 5% level
only once. Thus, we find overall strong evidence that the running variable is continuous at the
threshold in our seven-day donut design.
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Continuity of Predetermined Characteristics One could still be concerned about selection
bias arising from residual shifted births beyond our seven-day donut. The main endogeneity
concern with birth shifting is that either babies whose birth is postponed by one week are
healthier, which would lead to fewer hospital presentations in the first year of life, or they are
born with worse health conditions, which would lead to more hospital presentations in the first
year of life. However we show in Table 2 that control and treated babies are not statistically
different from one another in terms of pretreatment characteristics.

We perform 14 balancing tests on pretreatment observable characteristics of children and their
parents recorded in the perinatal data and birth records. We run our preferred specification
where outcome variables are the predetermined characteristics and bandwidths are optimally
chosen for each outcome (Cattaneo, Idrobo and Titiunik, 2019). We find precisely estimated
zero association for almost all predetermined characteristics. For only one predetermined
characteristic do we reject the null at the 10% level: we find that treated babies are 1 percentage
point more likely to be born to single mothers compared to control babies. Importantly, our
tests are high powered—we would be able to detect differences in the share of births to single
mothers between control and treated babies as small as 1.68 percentage point at the 1% level
(with 80% statistical power). Given the power of our tests, it is not surprising that we find this
marginally significant association. We show in Table B.8 that our results are robust to excluding
more observations close to the threshold where manipulation could, in principle, still occur.

Continuity of Birth Outcomes We present additional evidence in Table 3 that control and
treated babies do not differ in 11 distinct birth outcomes, especially birth outcomes which would
indicate endogenous postponing of births. We only find a small statistically significant imbalance
in the Apgar score at 1 minute (p = 0.092). One minute after birth, babies born just after the
birth date eligibility threshold are 1.9 percentage point less likely to have an Apgar score strictly
above 7 compared to control babies, amounting to a decline of 2.5% from the pre-threshold
mean in the optimal bandwidth. Five minutes after birth, we cannot detect any imbalances
in Apgar scores between control and treated babies suggesting that these discrepancies have
dissipated. Figure 2 provides supporting graphical evidence. These RD-plots provide graphical
evidence suggesting that babies in the control group are not systematically different from treated
babies based on six key characteristics associated with birth shifting and predictive of health
status in the first year of life: gestational age in weeks, whether the baby was born prematurely
(before 37 weeks), whether the baby required additional medical care (admitted to Special care
Nursery), Apgar scores at 1 and 5 minutes after birth, and birth weight in grams.

Placebo Outcomes around the Threshold in Prepolicy Years To provide further evidence on
the validity of our regression discontinuity design, Table 4 presents results on placebo outcomes
for births around July 1, 2002, and July 1, 2003, respectively, following Cattaneo, Idrobo and
Titiunik (2019) and used in e.g., Carneiro, Løken and Salvanes (2015) and Borra et al. (2021).
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Table 2: Continuity of Predetermined Characteristics at the Threshold

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Child and Parental Predetermined Characteristics:
Child is female 0.015 0.011 0.175 477 22,681 22,733 0.483
Birth in private hospital 0.012 0.013 0.334 387 18,366 18,187 0.341
No. of antenatal visits −0.056 0.09 0.535 325 14,058 13,840 10.682
Mother smokes 0.002 0.008 0.788 591 27,325 27,787 0.205
Mother’s age:

35+ −0.005 0.008 0.509 565 26,620 26,846 0.180
40+ −0.004 0.004 0.288 475 22,566 22,635 0.031

Father’s occupation:
High skilled 0.007 0.012 0.554 472 21,323 21,216 0.332
Low skilled 0.009 0.012 0.458 558 25,023 25,088 0.557

Mother’s marital status:
Never Married 0.011 0.006 0.077 620 29,180 29,639 0.117
Married −0.006 0.008 0.464 503 23,821 23,910 0.871
Single −0.004 0.003 0.115 425 20,117 20,039 0.013

Mother’s race:
Caucasian 0.001 0.006 0.915 509 24,082 24,150 0.908
Asian 0.003 0.004 0.531 571 26,895 27,117 0.046
Aboriginal or TSI −0.004 0.005 0.346 471 22,369 22,411 0.045

Note: This table presents the results of balancing tests on pretreatment characteristics of children and their parents
based on birth and perinatal records. Each line corresponds to a separate regression using our main specification.
We use local polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths
with standard errors clustered at the level of birth dates. We exclude 38 children born overseas in 2004 and all
births within seven days of July 1, 2004. The correlation between continuous Apgar scores at one and five minutes
is 0.604 in this sample. p-values in italics indicate effects statistically significant at least at the 10% level.

The table focuses on outcomes from inpatient services measured in prepolicy years 2002 and
2003 as not all outcomes are available for those placebo years.17 Table 4 demonstrates that there
are no discontinuities in the use of inpatient services for children born around July 1, 2002 and
July 1, 2003. In addition, we show in Table B.13 that there are also no discontinuities in birth
outcomes and parental characteristics of those babies born around July 1, 2002 and July 1, 2003.

17Our emergency department records start in July 2003 and our inpatient services records start in July 2001.
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Table 3: Continuity of Child Birth Outcomes at the Threshold

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Child birth outcomes:
Baby weight 22.067 14.375 0.125 483 22,955 23,004 3349.67
Special Nursery 0.001 0.010 0.923 381 18,007 17,856 0.168
NICU 0.001 0.003 0.755 703 33,225 33,731 0.028
PICU 0.000 0.001 0.822 475 22,465 22,544 0.002
Neonatal death −0.001 0.001 0.724 323 15,208 15,074 0.008
Apgar 1 min > 7 −0.019 0.011 0.092 431 20,382 20,208 0.759
Apgar 5 min > 7 −0.002 0.005 0.611 470 22,218 22,272 0.971
Gestational age 0.057 0.062 0.354 336 15,824 15,682 38.758
Preterm birth −0.004 0.007 0.606 670 31,671 32,140 0.148
Obstetric complication −0.024 0.014 0.100 294 13,725 13,617 0.316
C-Section 0.007 0.013 0.566 622 29,224 29,721 0.309

Note: This table presents the results of balancing tests on child birth outcomes based on birth and perinatal records.
Each line corresponds to a separate regression using our main specification. We use local polynomial estimation
with robust bias-corrected inference methods, and CER-optimal bandwidths with standard errors clustered at
the level of birth dates. We exclude 38 children born overseas in 2004 and all births within seven days of July 1,
2004. The correlation between continuous Apgar scores at one and five minutes is 0.604 in this sample. NICU and
PICU refer to Neonatal Intensive care Unit and Pediatric Intensive care Unit. p-values in italics indicate effects
statistically significant at least at the 10% level.
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Figure 2: Continuity of Birth Outcomes at the Threshold

(a) Gestational age (b) Preterm birth

(c) Special Nursery (d) Apgar score, one minute

(e) Apgar score, five minutes (f) Birth weight (in g)

Note: These RDPlots present graphical evidence that the introduction of the Australian Baby Bonus is not
systematically associated with birth outcomes. On every figure, the x-axis corresponds to birth dates aggregated
in two-week windows around the threshold, and the y-axis to the birth outcome of interest. The red dashed line
indicates the implementation date of the Baby Bonus (July 1, 2004). These plots are produced with the rdplot
Stata command (Calonico, Cattaneo and Titiunik, 2015; Calonico et al., 2017). We select the number of bins on
each side of the threshold to be evenly spaced and variance-mimicking (ESMV), and we use for each outcome the
CER-optimal bandwidth estimated using the rdrobust Stata command (Calonico et al., 2017; Calonico, Cattaneo
and Farrell, 2018, 2020). The black line represents the local linear fit using a triangular kernel. The gray shaded
areas represent the 95% confidence interval around the mean of each bin. We exclude births within seven days of
the threshold.
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Table 4: Placebo Effects of the Australian Baby Bonus on Hospital Presentations in Prepolicy Years

Placebo Outcomes in Prepolicy Years

July 1, 2002 July 1, 2003
Coef. Est. Sd.err. Coef. Est. Sd.err.

(1) (2) (3) (4)

Health Care Utilization by Subitem (inpatient services only)

Panel A. Any presentation by hospital service:
Inpatient services 0.030 0.019 0.002 0.019

Panel B. Any presentation deemed urgent/severe by hospital service:
Inpatient Services:

Urgent, acute or severe problem 0.012 0.014 0.013 0.024
Admission to ward −0.004 0.009 −0.001 0.007
Overnight admission 0.010 0.017 −0.015 0.020

Panel C. Any potentially preventable pediatric presentations:
Any PPP presentation, inpatient services −0.018 0.011 0.035∗∗ 0.017

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with medical referral:
Inpatient services:

Planned visit 0.002 0.006 0.006 0.008
Visit with med. referral 0.012 0.014 −0.010 0.018
Booked elective procedure 0.018 0.012 −0.003 0.012

Note: This table presents RD treatment effects of the Baby Bonus on hospital presentations in prepolicy years
(2002 and 2003). Each line corresponds to a separate regression using our main specification. We use local
polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths with standard
errors clustered at the level of birth dates. We exclude children born overseas in 2002 (resp. 2003) and all births
within seven days of July 1, 2002 (resp. 2003). *, **, and *** denote effects significance at the 10%, 5% and 1%
respectively.
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5 Main Results: Hospital Care Utilization in the First Year of

Life

Our results indicate that the Australian Baby Bonus led to a 0.098 standard deviation reduction
in hospital care utilization in the first year of life. Table 5 presents the main results on health
care utilization within the first year of life. Figure 3 presents this result graphically.

Table 5: Effects of the Australian Baby Bonus on Health Care Utilization Within the First Year of Life

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Health Care Utilization −0.098 0.034 0.004 306 14,363 14,267 0.187
Index [std.]

Note: This table presents our main results on our standardized index of health care utilization. We use local
polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths with standard
errors clustered at the level of birth dates. We exclude 38 children born overseas in 2004 and all births within
seven days of July 1, 2004. p-values in bold indicate effects that are statistically significant at least at the 5% level;
p-values in italics indicate effects that are statistically significant at the 10% level.

Because the health care utilization index captures presentations for adverse outcomes, the above
finding suggests that the Baby Bonus may be welfare enhancing. However, this result could
have been explained by other factors. It is possible that the lump-sum cash injection of the Baby
Bonus caused parents to sort out of the hospital sector. They may demand less hospital care for
their children, while using the cash injection to (partially) fund demand for costly goods and
services that are unrelated, or even adverse, to children’s health. To better understand whether
the treatment effect of the Baby Bonus on hospital care utilization can indeed be interpreted as
suggestive of health improvements, we analyze the effect of the Baby Bonus on each item of
our index separately which capture presentations for different types of presentation (e.g., acute,
urgent or preventable care versus elective care) and on individual diagnoses, which can give
insights about parental decisions to seek care for the child.
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Figure 3: Effects of the Australian Baby Bonus on Health Care Utilization Within The First Year of Life

Note: This figure present graphical evidence that the Australian Baby Bonus reduced hospital care utilization within
the first year of life for treated babies. The x-axis corresponds to birth dates aggregated in two-week windows
around the threshold, and the y-axis corresponds to our health care utilization index. The red dashed line marks the
implementation date of the Baby Bonus (July 1, 2004). This plot is produced using the rdplot Stata command
(Calonico, Cattaneo and Titiunik, 2015; Calonico et al., 2017). We select the number of bins on each side of the
threshold to be evenly spaced and variance-mimicking (ESMV), and we use the CER-optimal bandwidth estimated
using the rdrobust Stata command (Calonico et al., 2017; Calonico, Cattaneo and Farrell, 2018, 2020). The black
line represents the local linear fit using a triangular kernel. The gray shaded areas represent the 95% confidence
interval around the mean of each bin. We exclude all births within seven days of the threshold.

5.1 Detailed Hospital Presentations: Acute and Severe Problems, Preventable

Hospitalizations, and Elective Care

We show that the decline in health care utilization within the first year of life for treated babies
is driven by an overall decline in hospital presentations at inpatient services and at emergency
departments (although not statistically significant). At inpatient services and emergency depart-
ments, the Baby Bonus led to a significant decline in presentations for the most acute and severe
problems, and presentations deemed preventable by doctors. Those findings suggest that the
Baby Bonus may have led parents to take actions to prevent health problems from becoming
acute or severe. Table 6 presents our findings by type of hospital presentations and Figure 4 the
corresponding graphical evidence.

Panel A shows results on the probability of having a hospital presentation overall and split
between emergency department and inpatient services, some of which are transfers from emer-
gency departments in cases that require more examination. Treated babies are significantly less
likely to have presentations at inpatient services by –3.4 percentage points (ppt) (p = 0.040,
11% decline compared to the sample mean) and at emergency departments –2.4 ppt (albeit not
statistically significant, p = 0.232).18

18Our conclusions are robust to using a count data model to study the impact of the policy on the intensive margin
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Panel B presents our findings on presentations deemed urgent or severe by hospital staff. Treated
babies are significantly less likely to be admitted for urgent and acute care needs (as classified
by the triage nurse) to an emergency department ward by –3.8 ppts (p = 0.004) and to inpatient
services by –3.7 ppts (p = 0.005). Relative to the sample means, these effect imply a reduction
of 29% and 22%, respectively. These findings suggest an improvement in baby health because
hospital presentations for acute and severe problems are treated for free in Australia and are not
likely treatable out of the hospital care sector (e.g., by GP services or physiotherapy), such that
those outcomes are unlikely to suffer from biases arising from parental sorting in or out of the
hospital care sector.

Panel C presents the effects of the implementation of the Baby Bonus on potentially preventable
pediatric hospitalizations, as defined by medical staff upon presentation at the hospital. We also
find that treated babies have significantly fewer hospital presentations deemed “preventable”
by hospital staff at inpatient services by –2.8 ppts (p = 0.005), a 28% reduction relative to the
sample mean. Those outcomes refer to health concerns that should have been dealt with earlier
in the life-cycle of the disease or when the disease could have been avoided altogether with the
availability of better financial resources. Those outcomes suggest that parents may have invested
in preventive health care, thus preventing babies’ conditions from becoming acute or severe.

Finally, Panel D shows that the Baby Bonus had no significant impact on planned hospital
presentations within the first year of life. Planned hospital presentations could indicate an
increase in parental investments in child health because these involve direct (money and time)
costs. Due to those costs, those outcomes could be partly biased by parental sorting out of the
hospital care sector. Our findings suggests that the policy had no impact on parental investments
at this margin and no impact on sorting patterns for those types of presentations.

Overall, treated babies had fewer hospital presentations altogether, and in particular they have
fewer of the more acute and costlier presentations, and fewer preventable hospitalizations.
These findings suggest that the Baby Bonus may have had a positive impact on infant health,
not just health care utilization Our findings regarding presentations deemed preventable by
doctors suggest that some of those improvements in health may have occurred through parental
behavioral changes.

of presentations (Appendix Table B.3)—the estimates have the same sign, magnitude, and significance as our
main results. Eligible babies have, on average, 0.12 fewer visits at the emergency department and 0.06 fewer
presentations at inpatient services within their first year of life. These effects represent a decline of 20% and 12.5%
compared to the sample means of 0.59 and 0.48 visits. Those are economically sizeable effects: following the Baby
Bonus, five out of ten children have a presentation at the emergency department before their first birthday instead of
seven out of ten before the policy, and three out of ten instead of four out of ten have a presentation at an inpatient
service within their first year of life.
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Table 6: Effects of the Baby Bonus on Hospital Presentations in the First Year of Life by Type of
Presentation

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.013 0.021 0.532 175 8,022 7,855 0.451
Emergency department −0.024 0.020 0.230 152 6,906 6,764 0.310
Inpatient service −0.034 0.017 0.040 215 9,832 9,611 0.313

Panel B. Presentations for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.017 0.018 0.369 172 7,833 7,667 0.207
Admission to ward −0.038 0.013 0.004 173 7,891 7,772 0.130

Inpatient services:
Urgent, acute or severe problem −0.037 0.013 0.005 207 9,483 9,235 0.172
Admission to ward 0.002 0.007 0.761 206 9,426 9,202 0.027
Overnight admission −0.022 0.012 0.074 299 13,994 13,856 0.204

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.033 0.019 0.083 153 6,906 6,764 0.218
Any PPP presentation, ED −0.032 0.018 0.071 142 6,418 6,320 0.180
Any PPP presentation, IS −0.028 0.010 0.005 215 9,832 9,611 0.105

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.010 0.005 0.074 147 6,619 6,497 0.017
Visit with med. referral 0.002 0.009 0.845 152 6,870 6,704 0.054

Inpatient services:
Planned visit −0.001 0.004 0.882 289 13,535 13,442 0.025
Visit with med. referral −0.010 0.010 0.308 198 9,108 8,874 0.094
Booked elective procedure 0.003 0.008 0.657 230 10,579 10,481 0.056

Note: This table presents the effects of the Australian Baby Bonus on hospital presentations by type of presentation.
Each line corresponds to a separate regression using our main specification. We use local polynomial estimation
with robust bias-corrected inference methods, and CER-optimal bandwidths with standard errors clustered at the
level of birth dates. We exclude 38 children born overseas in 2004 and all births within seven days of July 1, 2004.
p-values in bold indicate effects that are statistically significant at least at the 5% level; p-values in italics indicate
effects that are statistically significant at the 10% level.
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Figure 4: Effects of the Australian Baby Bonus on Hospital Presentations Within The First Year of Life

(a) Inpatient services visits (b) Emergency department visits

(c) Severe/acute problems, inpatient services (d) Admission to emergency department ward

(e) PPP presentation, inpatient services (f) PPP presentation, emergency department

Note: These RDPlots present graphical evidence that the introduction of the Australian Baby Bonus reduced
hospital presentations within the first year of life for treated babies. On every figure, the x-axis corresponds to
birth dates aggregated in two-week windows around the threshold, the y-axis to the outcome of interest, and the red
dashed line marks the threshold (July 1, 2004). These plots are produced with the rdplot Stata command Calonico,
Cattaneo and Titiunik (2015); Calonico et al. (2017). We select the number of bins on each side of the threshold
to be evenly spaced and variance-mimicking (ESMV), and we use for each outcome the CER-optimal bandwidth
estimated using the rdrobust Stata command (Calonico et al., 2017; Calonico, Cattaneo and Farrell, 2018, 2020).
The black line represents the local linear fit using a triangular kernel. The gray shaded areas represent the 95%
confidence interval around the mean of each bin. We exclude births within seven days of the threshold.

25



5.2 Treatment Effects by Diagnosis

Breaking down results by diagnosis, we show that the decline in hospital care utilization for
treated babies is driven by a decline in presentations for respiratory problems, and in particular
by potentially preventable bronchiolitis and gastroenteritis, the two most common types of
potentially preventable pediatric presentations for babies in the first year of life in our data.
Table 7 presents our estimation results for the five most common types of PPP presentations
within the first year of life, and the ten most common problem/diagnosis groups organized in
indices; Table B.4 presents results on each diagnosis.

Panel A presents results on the five most common types of PPP presentations for babies in the
their first year of life. We find that the Baby Bonus led to a –2.5 ppts (p = 0.012) decline in
emergency department presentations for potentially preventable bronchiolitis, the most common
respiratory illness for infants, which is associated with asthma at later stages. This effect implies
a reduction of 34% relative to the sample mean. In line with this finding, the Baby Bonus
also led to a –12.7 ppts decline in presentations for respiratory problems. Figure 5 presents
graphical evidence on the effect of the Baby Bonus on hospital presentations for respiratory
problems and on emergency department presentations for potentially preventable bronchiolitis.
The figure emphasizes the sharpness of the treatment effect at the birth-date eligibility threshold
for respiratory health outcomes. In addition, we find evidence that the Baby Bonus decreased by
–2.4 ppts presentations for preventable gastroenteritis (significant at the 10% level, p = 0.061),
the third most common cause of hospital presentations for infants in the first year of life in our
data.

Importantly, for presentations related to potentially negligent behaviour of parents, such as
accidents, injury and trauma, we find no significant effect of the Baby Bonus with a treatment
effect size of 2.9 ppt (p = 0.481, Table 7, Panel B). If anything, the Baby Bonus may have
reduced presentations due to problems with external causes. Table 7 shows that the Baby Bonus
reduced this probability at inpatient services by 1.2 ppt (p = 0.047, 23% relative to the sample
mean).

Together, those results lend additional support to our interpretation that the Baby Bonus had
an overall positive impact of infant health, consistent with increased parental investments or
behavioral responses with positive health returns.
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Table 7: Effects of the Australian Baby Bonus on Medical Diagnoses Within the First Year of Life

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Panel A. Potentially preventable pediatric presentations:
Emergency department:
Bronchiolitis −0.025 0.010 0.012 152 6,870 6,704 0.074
Gastroenteritis −0.024 0.013 0.061 94 4,047 3,969 0.043
Laryngitis −0.002 0.006 0.759 127 5,674 5,622 0.010
Otitis media −0.002 0.005 0.706 136 6,056 5,978 0.009
Respiratory infection −0.013 0.010 0.223 121 5,357 5,280 0.046

Inpatient services:
Bronchiolitis −0.013 0.008 0.105 160 7,272 7,126 0.057
Gastroenteritis −0.007 0.005 0.141 208 9,507 9,292 0.020
Laryngitis 0.000 0.002 0.849 221 10,151 9,965 0.004
Otitis media 0.001 0.001 0.369 274 12,657 12,665 0.003
Respiratory infection −0.003 0.004 0.453 271 12,540 12,537 0.013

Panel B. Presentations by ICD-10-AM diagnosis chapter and presenting problem:
Respiratory −0.127 0.032 0.000 309 14,530 14,437 0.132
Infection −0.007 0.033 0.835 286 13,353 13,278 0.110
Digestive −0.008 0.032 0.810 356 16,833 16,749 0.078
Unspecified −0.021 0.029 0.476 367 17,335 17,211 0.040
Eyes and ears 0.035 0.028 0.209 417 19,809 19,620 0.033
Skin 0.016 0.025 0.527 392 18,613 18,479 0.024
Injury/Trauma/Poisoning 0.019 0.027 0.481 347 16,366 16,260 0.010
Nervous system 0.000 0.019 0.982 454 21,587 21,589 −0.017

Note: This table presents the results of regressions of the effect of the Australian Baby Bonus on presentations
diagnoses for babies within their first year of life. Each line corresponds to a separate regression using our main
specification, where outcomes are specific diagnoses. We use local polynomial estimation with robust bias-corrected
inference methods, and CER-optimal bandwidths with standard errors clustered at the level of birth dates. We
exclude 38 children born overseas in 2004 and all births within seven days of July 1, 2004. p-values in bold
indicate effects that are statistically significant at least at the 5% level; p-values in italics indicate effects that are
statistically significant at the 10% level.
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Figure 5: Effects of the Baby Bonus on Presentations for Respiratory Problems in the First Year of Life

(a) Presentations for respiratory problems (index) (b) PPP bronchiolitis, emergency department

Note: These RDPlots present graphical evidence that the Australian Baby Bonus reduced hospital presentations for
respiratory problems in the first year of life for treated babies. On every figure, the x-axis corresponds to birth
dates aggregated in two-week windows around the threshold, the red dashed line indicates the threshold date (July
1, 2004), and the y-axis to the outcome of interest. These plots are produced with the rdplot Stata command
Calonico, Cattaneo and Titiunik (2015); Calonico et al. (2017), which implements a data-driven procedure to
optimally select the number of bins. We select the number of bins on each side of the threshold to be evenly spaced
and variance-mimicking (ESMV), and we use for each outcome the CER-optimal bandwidth estimated using the
rdrobust Stata command (Calonico et al., 2017; Calonico, Cattaneo and Farrell, 2018, 2020). The line represents
the local linear fit using a triangular kernel. The gray shaded areas represent the 95% confidence interval around
the mean of each bin. We exclude births within seven days of the threshold.

6 Longer-Term Impacts of the Baby Bonus

So far we have shown that the Australian Baby Bonus led to a decline in hospital care utilization
for preventable and acute respiratory problems within the first year of life. Our evidence is
consistent with additional or more adequate parental investments in child health that occur
outside the hospital sector, either in the primary care sector or in the home environment. We
now assess what happens in the follow-up years until age five.

Table B.5 in Appendix shows that the risk of health care utilization for preventable and urgent
care is also lower for treated than for control babies in their second year of life. Although, the
estimates are imprecise, the are relatively large in magnitude. For instance, in both age groups,
treated babies are around –2 ppts less likely to present to an emergency department. Treated
babies are –2.2 ppts less likely to present for preventable problems at emergency departments in
the second year only. No further effects are detected at later ages.

Table B.6 indicates that the lower risk of presentations for preventable problems is driven by
lower presentation risk for preventable otitis media (glue ear) (–1 ppt) and respiratory infections
(–2.6 ppts) in the second year of life. Treated babies are also less likely to present at the
emergency department for injuries, trauma and poisoning problems (–2.6 ppts), unspecified
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problems (–2.3 ppts) and eye- and ear-related problems (–1 ppt).

However, treated babies are significantly more likely to have planned visits (+1.7 ppts) or booked
elective procedures (+1.6 ppts) at inpatient services in the second year of life. They are also
more likely to present for planned visits at the emergency department (0.8 ppts) within their
third year of life. It is these type of presentations that require a medical referral from a specialist
and that incur co-payments.

We find precisely estimated null effects on any other subsequent diagnoses up until age five. That
we do not find effects in the medium-run is consistent with a pattern emerging in the literature.
Several studies find positive short-term and long-term impacts of social security policies and
no impacts in the medium-term (see Aizer, Hoynes and Lleras-Muney (2022) for an excellent
review). Our findings suggest that the decline in hospital presentations that we find in the first
year of life are not associated with later additional hospital care utilization compensating for lack
of early appropriate care or under–detection of true health problems, but rather these findings
are consistent with treated babies receiving better or more adequate hospital care. Furthermore,
our findings suggests that Baby Bonus households may have used the Baby Bonus money to
increase elective care that requires higher co-payments, which can be interpreted as a health
investment.

7 Robustness of Main Findings

In this section, we discuss the sensitivity of our findings to three types of concerns: i) robustness
of our identification strategy; ii) limitations of our data and sensitivity to available data; and iii)
robustness of our inference to multiple hypothesis testing corrections.

7.1 Robustness of Identification Strategy

We provide additional evidence on the validity of our research design, by showing that our
findings are robust to alternative choices of bandwidth and are not driven by observations close to
the threshold, by selective abortions, or by potential seasonalities (e.g., due to seasonal viruses)
or nonlinearities around the eligibility threshold that could spuriously affect our estimates. Figure
6 presents a summary of our point estimates and 95% confidence intervals across our sensitivity
analyses. As the figure shows, our point estimates and confidence intervals are robust to most
sensitivity analyses, with a benchmark effect of -0.098 (SE 0.034) and a mean treatment effect
of -0.112 across 16 different specifications, ranging from -0.049 (SE 0.05) for children born to
high-skilled fathers to -0.321 (SE 0.136) for children born within 60 days around threshold. Our
results suggest that the treatment effect is larger in magnitude and much less precisely estimated
for babies born in winter months in the narrowly defined bandwidths of 60 days and 90 days
around the threshold, this pattern is likely due to loss of statistical power. We discuss those
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analyses in details below.

Figure 6: Effects of the Australian Baby Bonus on Health Care Utilization Within The First Year of Life
Across Specifications

Benchmark

Alt Clustering: MSE optimal

Alt ClusteringL CER Optimal

No Donut

Donut: 5 Days

Donut: 8 Days

Donut: 15 Days

Donut: 18 Days

Bandwidth: CER Optimal, sym

Bandwidth MSE Optimal

CER Optimal, asym

Bandwidth 1/2 CER

Bandwidth: 90 days

Bandwidth: 60 days

Heterogeneity: High skill fathers

Heterogeneity: low skill fathers

−.6 −.5 −.4 −.3 −.2 −.1 0 .1
Treatment effect on health care utilization (in standard deviations)

Note: This figure presents our main coefficient estimate and 95% confidence interval for our main specification
(blue), without clustering standard errors and using MSE- or CER-optimal symmetric bandwidths (red), using
donuts of 0, 5, 8, 15 and 18 days around the threshold (green), using various data-driven (MSE-, CER-optimal
symmetric and asymmetric bandwidths, 1/2 CER-optimal) and researcher-chosen bandwidths of 90 and 60 days
(yellow), as well as for subsamples of children of high-skilled fathers and low-skilled fathers (khaki). The vertical
dashed lines indicate 0 treatment effect (brown), our benchmark point estimate (blue) and the average effect across
specifications (red).

7.1.1 Observations close to threshold

There could be a concern that our results are driven by a small number of high-leverage
observations located near the threshold. Table B.8 shows that our results are almost the same
both in sign, magnitude, and significance when we consider alternative samples excluding births
within 5, 8, 12, and 15 days—donuts that exclude the same number of weekend days on each
side of the eligibility threshold. In Appendix A we show that including the seven-day donut
births closest to the birth date eligibility threshold of birth does not qualitatively change our
conclusions either.

7.1.2 Selective fertility and abortions

The Australian Baby Bonus was announced only seven weeks prior to implementation, leaving
little room for new conceptions. One could still be concerned in principle about selective
abortions of women already expecting at the time of the policy announcement, who would be
in the control group and would rather have another child later in the year in order to be in the
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treatment group. As discussed in Gans and Leigh (2009) and Deutscher and Breunig (2018), the
short-notice announcement of the policy left little scope for selective abortions because pregnant
women whose planned delivery date would be just before July 1, 2004, would be in their third
trimester of their pregnancies, at which stage selective abortion is highly unlikely.19 Table B.9
confirms that the introduction of the Baby Bonus did not induce changes in fertility (any past
pregnancies, live births, miscarriages) or selective abortions around the eligibility threshold.

7.1.3 Choice of bandwidth

One could be concerned that our estimation results are sensitive to our choice of bandwidth.
Table B.10 shows that our findings are robust to a variety of alternative data-driven bandwidth
choices (CER-optimal, MSE-optimal, asymmetric CER-optimal). We find remarkably similar
estimates in sign, magnitude, and significance across the different bandwidth specifications. The
symmetric CER-optimal method yields our smallest bandwidths of roughly half a year on each
side of the threshold (spread: 142–299 days, median: 182 days) and our largest bandwidths
with the MSE-optimal bandwidth method, of around three-quarters of a year (spread: 217–460,
median: 286 days). Although our point estimates are very similar across bandwidth choices,
they tend to be slightly larger in magnitude and more precisely estimated when using MSE-
optimal bandwidths. Both of these observations are explained by MSE-optimal bandwidths
being generally larger than CER-optimal bandwidths: 1) with more observations, MSE-optimal
bandwidths yield more precision than CER-optimal bandwidths, and 2) as they extend outward,
MSE-optimal bandwidths include babies that are increasingly born under different seasons and
that are less comparable at the outward bounds of the bandwidth compared to babies born close
to the threshold. We therefore prefer the specification using the CER-optimal bandwidth to be
more conservative with respect to both point estimation and inference.

7.1.4 Seasonality and timing of births

Another concern could be that our findings could be driven by spurious seasonalities in birth
outcomes, for example, due to seasonal viruses especially because June to September are the
coldest month of the year in South Australia. Based on Currie and Schwandt (2013), we could
expect that babies born in the coldest months of the year are exposed to worse environmental
conditions at birth compared to babies born further away from the colder months of the year
on either side of the threshold. Table B.11 presents our main results using smaller bandwidths
of one-half of the CER-optimal bandwidth, and 90 days and 60 days around the threshold.

19South Australia decriminalized abortions in 2022. However, abortions were feasible before that date. South
Australia happened to be the only state that reported abortions and abortion rates. 98% of all abortions happened
before 20 weeks of pregnancy. Abortion rates declined consistently over time in South Australia. in 2002 and
2003, there were 5,467 and 5,216 abortions, respectively or 23.6 and 23.0% of all live births respectively. In
2004 there was a further reduction in abortions, consistent with the declining trend in abortions over time. There
were 4,931 abortions or 22.3% of all live births. See archives at http://www.johnstonsarchive.net/policy/
abortion/australia/ab-aust-sa.html.

31

http://www.johnstonsarchive.net/policy/abortion/australia/ab-aust-sa.html
http://www.johnstonsarchive.net/policy/abortion/australia/ab-aust-sa.html


The magnitude of effects generally increases as the bandwidth narrows around the eligibility
threshold down to two months around the threshold. We see two plausible reasons for this
observation. On the one hand, with such narrow bandwidths, our estimation sample focuses on
babies born in the coldest months of the year and who are most comparable around the threshold;
for those babies, our treatment effect might legitimately be larger because families are more
constrained in winter months (e.g., due to heating expenditures) and the Baby Bonus helped
alleviate those constraints. On the other hand, by focusing on such narrow bandwidths we also
loose a lot of statistical power, and low statistical power can lead to finding unreasonably large
effects. To tease apart those two potential explanations, we explore to what extent this change in
magnitude close to the threshold could be due to the presence of some seasonalities in infant
health.

Falsification exercise using placebo thresholds To explore to what extent our findings could
be partially driven by seasonalities at births around the threshold, we conduct a falsification
exercise using placebo thresholds. The intuition is that if our results are driven by other factors
that coincide roughly with the July 1, 2004, eligibility threshold (such as parental selection into
timing of birth, as discussed in Buckles and Hungerman (2013)), then we should see statistically
significant treatment effects also for randomly chosen threshold dates in the vicinity of July 1.
This amounts to testing whether findings at the true threshold date are indeed stronger than effects
at any other random date close to July 1, 2004. We conduct permutation tests for alternative
thresholds(+/- 90 days before July 1, 2004) to assess whether the true threshold can be treated as
an exogenously assigned threshold, and if the coefficient estimate at the true threshold is extreme
in the distribution of all coefficient estimates at alternative thresholds (Ganong and Jäger, 2018).
We then construct the percentile rank of our estimate at the true threshold and compare it to the
distribution of all the estimates obtained and construct a randomization-based p-value. Table
B.12 presents the results of these permutation tests for each outcome , and indicates that our
main results can be rightfully attributed to the policy rather than to confounding factors such
as seasonality surrounding the birth date eligibility threshold. In five out of seven significant
treatment effects of the Baby Bonus, we find that the permutation test unambiguously states that
the estimate at the true threshold is robust, with randomization-based p-values close to 0.1.20.

From this exercise we conclude that 1) our findings are unlikely to be spuriously driven by
seasonalities, and 2) point estimates are larger for narrow bandwidths likely because of loss
of statistical power, not seasonalities. Overall our effects are robust to alternative choices of
bandwidths and are unlikely to be driven by seasonalities. Our results remain qualitatively the
same once we consider very small bandwidths, although point estimates become sensitive due

20There are two cases in which the permutation test yields a more ambiguous finding: inpatient services (p = 0.696)
and PPP presentation at inpatient services (p = 0.265). As the estimation results for these two outcomes were
consistent across all sensitivity checks, we consider the outcome of the low-powered permutation test as not
problematic.
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to loss of statistical power.

7.2 Sample Selection

Using hospital records alone to assess the health of young children has both advantages and
disadvantages. An ideal set of health measures would combine health status measures recorded
by different health care providers (pediatricians versus nurse practitioners and primary versus
specialty care) and in different health settings (such as hospitals or ambulatory care settings;
see National Research Council (2011)). In this section we discuss to what extent our data from
inpatient services and emergency department visits could provide a biased picture of the true
impact of the Baby Bonus on child health and health care utilization.

7.2.1 Inpatient services and emergency department visits

By focusing on hospital emergency and inpatient data, we could be missing out on important
aspects of child health. In Australia, only 15% of all child consultations take place in hospitals
and predominantly in the first two years of life (Hayes et al., 2019). This means that over 85%
of all health care consultations would take place in the primary care or community care sectors.
Hospital emergency and inpatient data thus account only for a fraction of the total care that
children receive in their first years of life.

By using hospital emergency data, we focus on acute and potentially acute health conditions.
In Australia parents are advised to take their babies or children to emergency departments if
they become ill suddenly or if they had an incident such as an assault, fall or burn, poisoning,
allergic reactions, broken bones, or breathing problems.21 By using hospital inpatient records,
our analysis also captures elective care, as parents may be referred from a specialist for an
inpatient or outpatient service. A clear advantage of these data is that we can measure accurately
a child’s health status (disease, impairment, injury, and symptoms) through extensive testing,
screening, and medical diagnosis. Such accuracy avoids measurement error inherent in general
practitioner or parental assessments. Another advantage is that we focus on health conditions
that may have severe long-term consequences if left untreated. Thus, we focus on illnesses and
injuries with the greatest burden of disease, which are of major policy relevance. In our South
Australian population data, the most common diagnosis for children seeking both emergency
and inpatient care are respiratory problems (27% in emergency care and 19% in inpatient care).

One concern could be that changes in the distribution of hospital presentations may reflect a
substitution effect. Substitution effects may occur where additional financial resources could
be used to purchase more appropriate but more costly care (e.g., primary care). In particular,
free emergency care may be used as a substitute for costly primary care. This is not a relevant
argument in the Australian health care setting, as primary care for children can be accessed

21See https://www.healthdirect.gov.au/hospital-emergency-departments for more details.
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without co-payments. Therefore, we are not concerned about substitution effects regarding our
main effects on the demand for hospital emergency care.

Another form of substitution effect however could affect our findings about elective inpatient
care. Although we find no impact of the Baby Bonus on the demand for elective inpatient
care, it is plausible that the Baby Bonus directly affected the demand for such procedures. This
concern does not affect the demand for inpatient services that results from admissions through
emergency care for acute conditions because those presentations come at no cost for patients, so
we would not expect substitution effects to occur. The demand for elective procedures might
however be affected in the case of planned admissions by medical referral for elective care,
which do require co-payments. The pathway to elective hospital care goes through a general
practitioner (which can be free of charge), who refers the patient to a specialist (usually not
fully covered by Medicare), who then refers the patient to a hospital service. For specialists,
patients pay on average two-thirds out-of-pocket, and this is true among pediatricians (Freed and
Allen, 2018). In South Australia, patients pay roughly 50% of the scheduled fee for pediatrician
outpatient services (Freed and Allen, 2018). The median initial consultation doctor fee for
pediatric consultations is $320, and in South Australia $263 (based on 2014 data—the only data
available). Thus, in South Australia families pay around $130 out-of-pocket for each visit. Thus,
it is possible that the Baby Bonus directly affected the demand for elective inpatient procedures.
In this case, we would expect the Baby Bonus to have increased the demand for such services,
which was not the case.

7.2.2 Records from public hospitals

Another concern could be that we only use public hospital data. We argue that this will not
invalidate our findings. Private hospitals are less prevalent in South Australia than in other
Australian states, where almost one in two hospitals are private (695 public versus 630 private
hospitals). In 2004, South Australia had 99 hospitals, of which 76 were public and 23 were
private. 22 Figure B.3 shows that all private hospitals are located in the Greater Adelaide
region, mainly in economically advantaged areas (councils of Calvary Wakefield, Ashford, and
St. Andrews) and in the vicinity of a public hospital. In five out of the 23 private hospitals,
emergency department admissions are shared between private and public hospitals. This means
patients always have the opportunity to seek care even in the absence of private health insurance.
Thus, our analysis would miss out mainly on elective surgery and rehabilitation services for adult
patients (private hospitals perform two-thirds of elective surgeries and 80% of rehabilitation
care).

More importantly, young children are rarely treated in private hospitals (see Australian Institute

22For a complete list of hospitals in South Australia, see https://data.sa.gov.au/data/dataset/
sa-health-hospitals-locations and https://www.myhospitals.gov.au/browse-hospitals/sa/
greater-adelaide/adelaide. Today, South Australia has 100 hospitals.
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of Health and Welfare, 2017, for reported statistics (Short AIHW 2017)). Overall, only one in
seven children (15%) aged 0–4 will be treated in a private hospital as a private patient overall
in Australia. Emergency care for children is almost exclusively provided in public hospitals.
Around the time the Baby Bonus was implemented, private patient infants (age 0–4) made up
around 1.5% of all hospital separations (AIHW 2017, Figure 4.2). There was not a single child
with private health insurance (PHI) admitted to a private hospital for emergency surgery in this
age group (AIHW 2017, Figure 7.1). Around 1.5% of all hospital separations for medical care
emergencies occurred in private hospitals, while over five times as many (8%) were treated in
the public hospital sector in this age group (AIHW 2017, Figure 8.1). Other acute care hospitals
admissions funded by PHI occurred almost never in private hospitals for children (< 1% of
all hospital separations), but about 7% of all hospital separations occurred in public hospitals
(AIHW 2017, Figure 9.1). It is slightly more common to see children funded by PHI treated in
private hospitals for nonemergency care such as nonemergency medical care or surgery (around
2.5% of all separations in both cases), while between two (4.3%) to three times (7.2%) as many
were treated in public hospitals for nonemergency medical care and surgery, respectively (see
AIHW 2017, Figure 8.2 and Figure 7.2, respectively).

Thus we do not expect that the absence of private hospital data from South Australia will alter our
conclusions about the effects of the Baby Bonus for emergency care, and it may only marginally
affect our conclusions about elective care.

7.2.3 Migration in and out of South Australia

One could be concerned that the babies we observe in their first five years of life may be a
nonrepresentative sample, as some families may be internal or international migrants. According
to the Australian Bureau of Statistics, in 2004 only 2,060 children aged 0–4 departed from South
Australia. Assuming that this rate of departure applies uniformly, this would imply that out of
the entire cohort of 17,200 babies born in 2004, we would predict that 412 would have left the
state (2.4%), which can be considered a low number. Out-of-state migration would only pose
a problem for statistical inference if outward migration is systematically correlated to infant
health, that is, if the unhealthiest babies leave the state as a consequence of the Baby Bonus.
This could happen if babies need specialist care that is not offered in South Australia. This is not
likely to occur as South Australia offers all health care services and has a specialized Women
and Children’s public hospital.23

7.3 Inference

In this section we discuss the robustness of our findings to alternative inference procedures, in
particular multiple-hypothesis corrected standard errors for statistical inference.

23See http://stat.data.abs.gov.au/Index.aspx?DataSetCode=ABS_DEM_QIM, accessed 17 April 2018.
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In the main analysis we test hypotheses on multiple outcomes, which increases the chance
of falsely rejecting a correct null hypothesis, simply by chance. To address this concern,
we present our main results under alternative inference procedures that correct for multiple
hypotheses testing. We use the Romano–Wolf step-down procedure (Romano and Wolf, 2005a,b,
2016), implemented using the rwolf2 Stata command (Clarke, Romano and Wolf, 2020). This
procedure, which is based on resampling methods, controls the familywise error rate—the
probability of rejecting at least one true null hypothesis across a set of hypotheses tested—by
ensuring that the familywise error rate does not exceed its predetermined significance. We
treat our main results as being all part of the same family of tests. One key advantage of this
method is its high power compared to previous methods that have been criticized for being too
conservative (e.g., Bonferroni, 1935; Holm, 1979; Westfall and Young, 1993).

Table B.14 presents the original asymptotic p-values associated with our main results in column
(1), and step-down Romano–Wolf p-values correcting our original p-values using a familywise
error rate in column (2) (Romano and Wolf, 2005a,b, 2016). All the statistically significant
coefficient estimates in our main results remain statistically significant when we using step-down
p-values: admissions to ward for acute or urgent problems, urgent inpatient services, and PPP
presentations at inpatient services. In addition, we also present p-values constructed using the
more conservative procedure proposed by Holm (1979) in column (3). Our findings are robust
for both multiple hypothesis testing adjustment procedures.24

8 Mechanisms

In this section, we focus on the role of parental behaviors on the impact of the Baby Bonus.
Cash transfers can, in principle, impact child health through two channels (Mayer, 1997; Yeung,
Linver and Brooks-Gunn, 2002; Milligan and Stabile, 2011): first, the “resources channel” that
captures the direct impact of additional income that allows carers to purchase more goods and
services, and second the “family process channel” that captures the indirect impact of income
on the psychological well-being of the family, which allows parents to spend more time with
children in productive activities. Children benefit directly through more income when parents
use additional household resources to purchase child-centered goods (see Dahl and Lochner,
2012), such as high-quality health care, day care, food, shelter, and clothing (Milligan and
Stabile, 2011). There is some evidence for the direct income channel from previous studies (e.g.,

24An alternative method is to use the sharpened false discovery rate q-values proposed in Anderson (2008). This
method entails first constructing indices to aggregate multiple hypotheses and eventually test fewer hypotheses,
and second constructing sharp-null p-values using resampling techniques from Westfall and Young (1993). This
method, however, does not account for correlations between items, which is likely an issue in our context. For
example, infants with more than one presentation at the hospital within their first year of life are likely to experience
more-severe health outcomes and have preventable hospital presentations. For this reason, we prefer to adjust for
multiple hypothesis testing using the Romano–Wolf step-down procedure (Romano and Wolf, 2005a,b, 2016).
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Cesarini et al., 2016; Kuehnle, 2014; Milligan and Stabile, 2011; Currie and Almond, 2011;
Currie, 2009; Case, Lee and Paxson, 2008; Currie, Shields and Price, 2007; Propper, Rigg and
Burgess, 2007; Currie and Stabile, 2003; Case, Lubotsky and Paxson, 2002; Yeung, Linver and
Brooks-Gunn, 2002; Mayer, 1997), yet the conclusions vary across context, perhaps due to
important variation in access to health care and the extent to which families are able to meet their
health care needs.25 There is also evidence on the importance of the family-process channel
in the literature (see e.g., McLoyd, 1990; Currie, Shields and Price, 2007; Propper, Rigg and
Burgess, 2007; Khanam, Nghiem and Connelly, 2009; Mullins, 2019). In particular, Mullins
(2019) shows that welfare payments significantly improve parental welfare and the stability of
spousal relationships, as well as assist mothers in returning to work smoothly and spending
more time with their children.

In the next subsections, we present evidence for both the “resources channel” and the “family
process channel”.

8.1 Heterogeneity by Socioeconomic Background

First, we study the heterogeneity of the impact of the Baby Bonus by socioeconomic status (SES)
using our administrative hospital records. We hypothesize that poorer families will benefit more
from the Baby Bonus, because they are generally more cash constrained and the Baby Bonus
represents a greater income shock for these families relative to household income. We find
that our results are larger for low-SES families. This is unsurprising, because the Baby Bonus
presented a larger windfall payment relative to average household income for disadvantaged and
financially constrained households. If the Baby Bonus was used to invest in children’s health
early in life, and if child health problems are generally more common in poorer households, then
we would expect a stronger impact of the Baby Bonus on child health and health care utilization
in the first years of life for poorer families. This is what we show in the Appendix Table B.15.26

In the absence of data on household income, we proxy family resources by the father’s occupation

25Exploiting lottery wins and administrative data from Sweden, Cesarini et al. (2016) show that a substantial lottery
win of 1 million Swedish kroner (US$110,000) between 1986 and 1994 leads to a significant 19% increase in two-
and five-year hospitalization rates of children after the lottery win. Similar effects are found for hospitalizations
due to respiratory illness and external causes, although those estimates are not statistically significant. No effects
were found for adults. It is hard to understand why large exogenous increases in household income would lead to
increased hospitalizations for children for respiratory illness in a country with universal health coverage. Although
not discussed in that way by the authors, this could be evidence that available financial resources were used to
finance previously unmet health care demand for children. This finding is in stark contrast to Kuehnle (2014), who
exploits regional variation in income to identify the causal impact of household income on children’s health in the
United Kingdom. Kuehnle (2014) finds that doubling household income reduces the probability of respiratory
illness by 46% relative to the base probability.

26See also balancing tests by SES in Appendix Table B.16. Note that we find two statistically significant associations
with treatment status suggesting that babies born just after the eligibility threshold are 2.1 ppts more likely to be
born to single mothers and 57 grams heavier on average. However, we find precisely estimated no associations for
another 21 pre-treatment characteristics of parents and indicators of baby health at birth.
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on birth records, which we classify into high skilled (Column 1) versus low skilled (Column 3).
High-skilled occupations refer to these with managerial, professional, and administrative tasks.
Low-skilled occupations refer to trade, service, plant and operational workers. We find that
the reduction in hospital presentations due to the Baby Bonus are largely driven by children in
families with low-skilled fathers. The coefficient estimates are larger in magnitude by a factor of
1.7–5.6 for all outcomes such as presentations at emergency departments and inpatient services
(Panels A and B), and potentially preventable pediatric presentations (Panel C). For instance,
children of low-skilled fathers born after the eligibility threshold are –4.2 ppts less likely to
present to emergency departments compared to babies born before the threshold (versus –2 ppts
for the high-skilled group) and are –5.1 ppts less likely to be admitted to a ward (versus –2.3
ppts for the high-skilled group). Children of low- versus high-skilled fathers are –4.8 ppts less
likely versus +0.8 ppt more likely to visit the emergency department for potentially preventable
pediatric problems. However, we find no significant differences for planned visits (Panel D).
Overall, the Baby Bonus seems to have helped low-SES parents prevent adverse shocks to their
children’s health.

8.2 Parental Behavioral Change: Evidence from the HILDA Survey

To study in-depth parental behavioral responses to the Baby Bonus, we use auxiliary data
from the Household, Income, and Labor Dynamics in Australia (HILDA) survey, the leading
nationally representative household survey in Australia, which has followed 7,682 households
and over 13,000 individuals yearly since 2001.27 We cannot achieve the same level of statistical
precision using HILDA data compared to population-level administrative records, therefore we
treat our results using HILDA data as suggestive evidence on parental behavioral responses to
the Baby Bonus that complement our findings on preventable presentations and diagnoses using
population-level administrative hospital records (See Sections 5.1 and 5.2).

Data preparation We use the restricted version of HILDA to identify all babies born around
the time of the introduction of the Baby Bonus in July 2004. We focus on Waves 1 to 5
covering the years 2001 until 2005. Most participants were interviewed between September and
November each financial year (July to June in Australia). Interviewers collected information on
household composition—the number of household members, the number of dependents between
0 and 24 years of age, and detailed information on new or leaving household members, their
arrival date (month, year), and their age at arrival. Respondents then answered demographic

2713,969 participants from 7,682 households were followed on an annual basis with all members of those initial
households aged 15 years or older, or persons who joined the household later. Individuals gave oral informed
consent for participation in the study. Additionally, consent was sought from parents or guardians before seeking the
involvement of household members aged less than 18 years. In 2011, the sample was refreshed with an additional
2,153 households. Sample loss and attrition were low, with re-interview rates rising from 87% in wave 2 to over
95% by wave 8 and remaining above that level in subsequent waves (Watson and Wooden, 2021; Summerfield
et al., 2021).
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questions, including their marital status and history, employment status and history, child care
use, and detailed information on their sources of earned and unearned income. Eventually they
moved on to a self-completion questionnaire (SCQ), which includes information regarding
financial hardship since January of the interview calendar year, and detailed information about
self-assessed health issues. The nonresponse rate is low for the SCQ component (below 10%).

Empirical specification We estimate on this sample our preferred nonparametric regression
discontinuity models with a seven-day donut. We cluster standard errors at the level of the
parent, although findings are stable to clustering at the household level. We consider bandwidths
of 90 and 120 days around the threshold.

Our specification applied to the HILDA data has limitations. We are forced to use relatively
narrow bandwidths because of the timing of interview relative to the Baby Bonus eligibility
threshold and the Australian fiscal year cutoff. With a broad bandwidth, we would be comparing
families who answer about the financial year before 2004 (for control babies) and about the
financial year after 2004 (for treatment babies). At the same time, narrow bandwidths severely
restrict the number of families in our estimation sample. We observe respectively 58 and 82
unique babies born within 90 and 120 days of July 1, 2004. Figure C.1 presents the distribution
of daily births within 120 days of July 1, 2004. Ultimately, we view our results using the HILDA
survey as low-powered yet suggestive of mechanisms underlying our main effects.

Appendix C presents evidence on the internal validity of our research design in the HILDA
data. Table C.1 shows that there is no evidence of manipulation in the running variable based
on nonparametric density tests; Table C.2 indicates that there no evidence of a discontinuity
at the threshold in parental age at birth, respondent sex, and the number of dependents in the
household aged 0–4, 5–9, 10–14, 15–24 respectively. We do find that babies eligible for the
Baby Bonus are slightly older at the time of interview, however controlling for this variable does
not alter our conclusions.

Findings We find suggestive evidence that the Baby Bonus helped eligible families cope with
the arrival of a newborn in the household. Table C.3 presents results focusing on babies born
within 120 days of the threshold, and Table C.4 presents results focusing on babies born within
90 days of the threshold. Overall, effects in both tables are of the same sign, but effects in
the narrower bandwidth are implausibly large due to low statistical power, while effects in the
broader bandwidth are smaller but loose statistical significance. Therefore, we interpret our
findings on mechanisms qualitatively without paying close attention to the magnitude of effects
or significance.

Tables C.3 and C.4 indicate that the introduction of the Australian Baby Bonus helped eligible
families increase their weekly expenditures on food and groceries, partially substituting away
from meals and take-out—albeit we cannot know whether those additional expenditures are
focused on child-centered goods. We also consistently find that the policy decreased financial
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stress and hardship for those families: eligible families were more likely to report being able
to raise $2,000 in an emergency, and less likely to report having gone without meals, to have
been unable to heat their home, to pay their rent or mortgage on time or to pay their utility bills
on time. Eligible families were also less likely to ask for financial help from families, friends
and community organizations, or to pawn or sell something. Those results suggest that the cash
injection from the Baby Bonus alleviated short-term financial constraints for those families,
which may contribute to the effects we found on infant health care utilization and health status.
We note that our treatment took place in the coldest months of the year and in the coldest part of
the country; the Baby Bonus may have helped households pay for better heating, which has been
associated with lower risks of respiratory infections in children with asthma (Howden-Chapman
et al., 2008). This could partly explain the decline in hospital presentations for preventable
bronchiolitis and acute respiratory problems for treated babies.

In addition, Tables C.3 and C.4 suggest that the Baby Bonus also had positive consequences on
the quality of parental relationships and parental self-assessed health, which may have an impact
on child health care utilization and health status on their own. We see consistently that eligible
families were more likely to remain married or in a de facto partnership one year after the birth
of the child, which suggests that the policy may have helped reduce conflict in the home and thus
improve marital stability. Parents of babies born after the threshold consistently report higher
self-assessed health on most dimensions—physical functioning, bodily pain (reverse coding
with positive indicating less bodily pain), emotional health, social functioning, general health
and mental health. These findings relate to the evidence regarding the "family-process" channel
through which household income can affect child health. McLoyd (1990) suggests that income
poverty is associated with poor parental health and high levels of maternal depression and stress.
Currie, Shields and Price (2007), Propper, Rigg and Burgess (2007), and Khanam, Nghiem and
Connelly (2009) show that the income gradient in child health is mediated by maternal mental
health both in the United Kingdom and Australia.28 Mullins (2019) finds that welfare payments
significantly improve parental welfare and the stability of spousal relationships. They also assist
mothers in returning to work smoothly. Less-stressed mothers are more likely to spend time
with their children in productive activities.

Last, Tables C.3 and C.4 suggest that the the Baby Bonus may have had some impact on intended
maternal labor supply and intended and effective child care use, although the HILDA does
not contain variables ideally suited to measure these effects. To measure of intended maternal
labor supply, we use the hours that the respondent would like to work, and we find small but
positive point estimates suggesting a potential positive impact of the policy on this dimension;

28Furthermore, neither study finds that the income gradient in child health is changing with the age of the child. On
the other hand, Case, Lee and Paxson (2008) find the relationship between income and child health strengthens with
age, which would be evidence suggesting that one channel through which income affects child health outcomes is
through access to beneficial goods.
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we interpret this with a grain of salt, however, because the question asks about labor contracts
in general, not specifically about returning to work after the arrival of a child, and given our
research design there is no reason to expect selection into the treatment or control group based
on one’s labor contract around the threshold. Across Tables C.3 and C.4, we see inconsistent
effects on mothers’ intended child care use around the threshold, but we do find consistent
suggestive evidence that the policy may have helped mothers with older children temporarily
increase their child care use after the introduction of the Baby Bonus. Using a few additional
hours of child care after the arrival of a newborn may have helped mothers spend more time and
attention on the newborn baby than in the absence of the cash injection. Delaying the use of
child care may have on its own prevented babies from getting sick.

9 Economic Relevance of the Baby Bonus

Now that we have established that treated babies have fewer urgent and acute hospital presenta-
tions in the first year of life that are not associated with additional compensatory presentations
for acute or severe problems in subsequent years, we can make back-of-the-envelope calculations
of the overall budgetary savings for the central planner. We focus on the cohort of babies born
in South Australia in the year 2004 to ignore fertility effects induced by the policy following its
introduction and to avoid extrapolating our estimates to the national context.

The Baby Bonus cost $3,000 per child, but since it substituted for other maternity benefits, its
net costs are only $2,157 (see Deutscher and Breunig, 2018, Section 2.3). The overall cost
of the policy could therefore amount to approximately $3,000 or $2,157 times the number of
babies born between July 1, 2004, and December 31, 2004. With total births in 2004 amounting
to roughly 17,200, we assume that births in the second semester of 2004 represented 8,600
children. Thus, the Baby Bonus costs corresponded to an increased investment in children
ranging between $18,550,200 and $25,800,000.

We focus on urgent/severe and PPP presentations in the first year only to avoid estimating a return
on investment that could fail at discerning necessary from unnecessary hospital presentations—
our back-of-the-envelope calculations should therefore be considered as conservative estimated
of the true return on investment of the Baby Bonus because we ignore the majority of presen-
tations for less-severe problems that remain necessary. For example, had we found evidence
consistent with adverse health outcomes for treated babies, such as a decline in hospital care
in the first year of life at the expense of additional hospital care later in life, we would have
incorporated these intertemporal effects in our accounting exercise. In the absence of these
longer-run effects, we focus on our main results in Table 5.

Table 5 shows that treated babies were –3.8 ppts less likely to be admitted to a ward for
urgent care and were –2.2 ppts less likely to be admitted for an overnight stay within their
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first year of life. They were also –3.2 ppts less likely to present at an emergency department
for a potentially preventable pediatric problem. We derive the average costs for potentially
preventable presentations at emergency departments, admissions to wards and overnight stays
(calculated at the average number of days admitted) from the National Hospital Cost Data
Collection.29 The average costs of admissions to each service are:

1. Admission to a ward: $6,111; Hence the total cost is -0.038 × 17,200 × $6,111 = $3,994,150;

2. Overnight stay pediatric: $5,513; Hence the total cost is -0.022 × 17,200 × $5,513 =
$2,086,119;

3. Presentation for preventable problems at ED: $507; Hence the total cost is -0.032 × 17,200
× $507= $279,053;

The total cost savings in the first year of the introduction of the policy amounts therefore to
$6,359,322. Given the payout costs of the Australian Baby Bonus ($18,550,200 to $25,800,000
in 2004), we calculate that between 24% and 34% of the immediate costs of the policy were
recouped immediately through a reduction in acute and preventable hospitalizations in the first
year of life of children eligible to the Baby Bonus.

The calculated cost savings underestimate true savings because we only focus on presentations
that are clearly considered avoidable by medical professionals and that require immediate
attention due to their urgency. We did not include in these calculations the human capital benefits
of better health early in life or the longer-term health and human capital benefits of parental
health investments (which we observed in the second year of life of treated babies). Although
these health investments are costly, international studies suggest that we can expect positive
effects in the longer-run (Aizer, Hoynes and Lleras-Muney, 2022).

10 Conclusions

Early life health, family, and income shocks have a long-lasting impact on children’s health
and human capital development and their adult labor-market trajectories (Almond, Currie and
Duque, 2017, 2018). Baby bonus policies can be a powerful lever to assist vulnerable children
and offer them a better start in life. Yet, little is known about the effectiveness of those policies
at improving children’s health outcomes and the mechanisms through which they can influence
child health.

We contribute to this literature by providing new evidence on children’s hospital care utilization
and health outcomes from birth until age five induced by the introduction of the Australian
Baby Bonus, an unconditional and unanticipated cash transfer paid to families with a newborn

29See https://www.ihpa.gov.au/sites/g/files/net636/f/publications/nhcdcround18.pdf.
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child. We estimate these effects by implementing a donut regression discontinuity design using
high-quality linked administrative data from the state of South Australia.

We show that the Australian Baby Bonus reduced emergency department presentations and
inpatient services utilization, with stronger effects for disadvantaged families. We argue that
these effects are economically meaningful, especially in a country with universal access to
health care and a high standard of living. Importantly, we demonstrate that this reduction in
hospital care is driven by a reduction in the presentations for acute, urgent, and severe problems
(in particular respiratory problems) but not by a reduction in the demand for elective care.
Combined, these effects suggest that the Baby Bonus may have led to an improvement in the
health status of treated infants.

We investigate the role of parental behavioral change in explaining the positive impact of
the Baby Bonus on infant health. We document that the Baby Bonus led to a decline in
presentations for potentially preventable pediatric hospitalizations especially acute bronchiolitis
(as indicated in hospital records by medical staff upon separation), and did not lead to an increase
in presentations for injuries, trauma or poisoning. These findings suggest that the cash transfer
helped parents of treated babies increase their investments in infant health, whether they were
direct investments in preventive or primary care or indirect investments in improving the home
or spending more time with their children.

To document finer mechanisms on within-family responses to the cash injection, we use the
Household Income and Labour Dynamics in Australia (HILDA) survey, Australia’s leading
household panel, which has run since 2000. Although our sample is small, we find evidence that
the Baby Bonus allowed families to increase expenditures on food and groceries and decreased
the incidence of financial stress and financial hardship. We also find that the transfer decreased
the likelihood of parental separation, improved parental physical and emotional self-assessed
health, and led to a small increase in childcare use for older children in the family, which may
have helped mothers spend additional time with their newborn. Supplementary investments
in food and groceries, reduced financial stress and hardship, improved parental health and
additional time spent with newborns are all important channels through which a modest cash
injection can improve early life health conditions.

Our findings indicate that the Australian Baby Bonus was a worthwhile public investment
in children and families with positive returns. Through a simple accounting exercise, we
show that although the Baby Bonus was not means-tested and effects were concentrated in
disadvantaged families, our estimates translate into economically meaningful budgetary savings.
At the intensive margin alone and looking only at the first year of life, the Baby Bonus reduced
the share of potentially preventable pediatric hospitalizations from one in four to one in five
infants in the first year of life. Similarly, the Baby Bonus reduces emergency department
presentations for respiratory problems from one in seven infants to one in ten in the first year of
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life, a reduction of more than 50%. Because the Baby Bonus reduced presentations for acute
and severe problems, which are the costliest types of presentations in the hospital care system,
we show that at least 34% of the initial expenditure of the Baby Bonus was recouped within the
first year of life of babies eligible to the Baby Bonus. This is likely an underestimation of the
true positive impact of the policy on the health of treated children as they age.

Our results provide a balanced account of the potential benefits and risks of an unconditional cash
transfer paid to families in one of the richest OECD countries in the absence of an official paid
parental leave policy. Our findings suggest that targeting such transfers toward disadvantaged
families may be both more effective and more efficient. The Australian Baby Bonus was
abolished in 2014; we suggest that this abolition was perhaps premature in light of the empirical
evidence on its effectiveness, especially for disadvantaged families.
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Appendix A Data Appendix

A.1 Birth Shifting in South Australia

In this appendix, we give a detailed account of birth shifting in South Australia following the
announcement on May 16, 2004 of the Baby Bonus introduced on July 1, 2004. We first provide
graphical evidence on the incidence of birth shifting around July 1, 2004. Next, we replicate the
findings of Gans and Leigh (2009) in our setting. Finally, we show the impact of birth shifting
on the identifying assumptions of our regression discontinuity design and discuss how birth
shifting within seven days of the implementation of the Baby Bonus affects of our findings.

A.1.1 Graphical evidence on birth shifting in South Australia

Gans and Leigh (2009) and Deutscher and Breunig (2018) provide convincing evidence that
a small group of families were able to delay the delivery date of their child so to receive the
Australian Baby Bonus. Based on accounting exercises, both studies suggest that i) birth shifting
concerned approximately 1,000 births (0.4% of the 254,200 children born in Australia in 2004)30,
ii) the vast majority of birth shifting occurred within the days contiguous to July 1, 2004, and iii)
birth shifting mostly took place for women who could reschedule a planned Cesarean-section
birth31

Figure 1 suggests that birth shifting did take place in South Australia in the days closest to the
threshold of July 1, 2004. On average, there are 46 births per day. We observe a slight decline in
the number of births in late June, with a particularly low number of births in the last three days
of June (Monday, June 28, Tuesday, June 29, and Wednesday, June 30). In the same way, there is
a peak in the number of births in early July. On Thursday, July 1, and Friday, July 2, the number
of births is 70 and 73 respectively, numbers far above the average of 49 (horizontal line). Thus,
a first graphical inspection suggests that excluding the sample of births within three to four days
around the threshold could be sufficient to exclude birth shifting. Yet, graphical inspection is not
sufficient to decide the exact number of days to exclude because other factors may influence the

30In 2004, in total 254,200 babies were born in Australia. On June 30, 2004, 490 babies were born, making it one of
the quietest days in neonatal units in three decades, while double this number of babies who were born on July 1
and 2, 2004 (978 and 902 respectively). Source: Australian Bureau of Statistics (ABS).

31There is no systematic evidence on how women are able to shift birth dates to a later date. In the context of the
Australian Baby Bonus, Dr Chris Tippett, then president of the Royal Australia and New Zealand College of
Obstetricians and Gynaecologists, stated in an interview with the Australian Broadcast Association: “We know that
that 4% of babies deliver on the date that we best calculate and what I am saying is in fact the women who would
be able to defer the deliveries—the women who would have had planned Cesarean-sections—often they’re planned
at, say 38 weeks, and one or two days. . . There’d be no harm in transferring those to 39 weeks and two days. . . I
think I’m correct in saying that last time this occurred and people looked at the data more closely, it seemed likely
that this effect was associated with people deferring things like Cesarean-sections.” ABC November 8, 2007, Simon
Santow “Mums ‘delaying births’ for maximum Baby Bonus”.
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number of births, such as day-of-the-week effects. Exploring the data in seven-day bundles to
control for this effect, we observe 290 births in the last week of June compared to 373 in the
first week of July, a difference of 83 births per week. It is also worth noting that there were 115
births in the last three days of June compared to 188 in the first three days of July. Hence, the
major contributor to the difference in the number of births between the last week of June and
first week of July were births that occurred within three days of the July 1, 2004, threshold.

A.1.2 Quantifying the total extent of birth shifting

In this section, we replicate the methodology of Gans and Leigh (2009) in South Australia and
Borra, González and Sevilla (2019) in order to quantify the total extent of birth shifting in South
Australia induced by the announcement of the Baby Bonus.

For this purpose, we estimate birth shifting as the difference in the number of daily births just
after versus before July 1, 2004, against the yearly average difference in all previous years until
2004. We use the South Australia birth registry and perinatal data, covering all births between
1991 and 2016, and we estimate the following equations, proposed by Gans and Leigh (2009)
that were also used in Borra, González and Sevilla (2019):

Birthsi = β1{Baby Bonus}i + γ11{Year}i ×1{Day of Week}i + γ21{Day of Year}i

+ γ31{Public Holiday}i + εi (A.1)

ln(Birthsi) = β1{Baby Bonus}i + γ11{Year}i ×1{Day of Week}i + γ21{Day of Year}i

+ γ31{Public Holiday}i + εi (A.2)

where the dependent variables are respectively the number of daily births in equation (A.1)
and the log number of daily births in equation (A.2). Our parameter of interest is β , which
captures the effect of 1{Baby Bonus}i, a dummy variable marking births on or after the birth
date eligibility threshold for the Baby Bonus on July 1, 2004. Under the assumption that
we can correctly account for pre-trends in births around July 1, 2004, β captures the causal
impact of the introduction of the Baby Bonus on the timing of births around July 1, 2004. To
accurately account for pretrends, we include four control variables: 1{Year}i an indicator for
the year of birth, interacted with 1{Day of Week}i, an indicator for the day of the week of birth,
1{Day of Year}i, a dummy variable to control for the day of the year, and 1{Public Holiday}i,
a dummy variable for public holidays. These fixed effects in our regressions allow us to flexibly
control for seasonality in births in year, week, and time of year that occur due to regular birth
scheduling. We ignore births after 2005 because the policy announcement on May 16, 2004,

54



also announced future increases of the Baby Bonus payment scheduled for July 1, 2006, and
July 1, 2008, and is thus likely to have induced endogenous fertility decisions.

Table A.1 presents the results of this analysis both in daily births and in log daily births.
Following Gans and Leigh (2009) and Borra, González and Sevilla (2019), we consider four
windows of analysis: the first column of Table A.1 focuses on births within seven days of July 1,
yearly; the second column focuses on births within 14 days, the third column births within 21
days, and the fourth column focuses on births within 28 days of July 1, each year. Using the
same method as Gans and Leigh (2009), we compute that within seven days of July 1, 2004,
around 50 births may have been shifted from the last days of June to the first days of July. These
potentially shifted births correspond to around 14% of the births that would have been expected
in the last days of June 2004. Columns (2)–(4) show that birth shifting did not seem to extend
much beyond seven days from the threshold because the number of potentially shifted births
grows only slowly as we expand the window around the threshold, and the share of potentially
shifted births declines to 6.7%.

Following Borra, González and Sevilla (2019), we also explore whether birth shifting was
driven by private hospitals and mothers with private health insurance. Our findings in Table
A.2 indicate that birth shifting was only marginally more prevalent in private hospitals and for
mothers treated as privately insured patient.

Last, Table A.3 presents the results of balancing tests on predetermined characteristics without
excluding births within seven days away of the threshold date. We find that babies born just
after the threshold date are born 32 grams heavier than babies born just before the threshold
date, and are 0.11 weeks older in gestational age. These findings are consistent with shifting
births from the end of June to the beginning of July. We also find that babies born just after the
threshold have 2.6 percentage points fewer complications compared to babies born just before
the threshold, which, in line with Gans and Leigh (2009), suggests that birth shifting mostly
occurred for scheduled low-risk births.

Overall, our findings indicate that birth shifting was a small phenomenon in South Australia,
largely confined to seven days around the birth date eligibility threshold, and that private
hospitals or privately insured mothers did not entirely drive birth shifting. However, balancing
tests show that, although small, birth shifting does require us to adapt our estimation strategy.
The next subsection discusses the optimal donut size in our data.
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Table A.1: The Effect of the Baby Bonus on Birth Shifting in South Australia

Window (W) +/– 7 days +/– 14 days +/– 21 days +/– 28 days
(1) (2) (3) (4)

Panel A. Number of daily births

Baby Bonus −14.22∗∗∗ −8.45∗∗∗ −7.18∗∗∗ −6.45∗∗∗

(3.85) (3.19) (2.36) (2.01)

R2 0.76 0.68 0.63 0.61
N. shifted births 49.8 59.1 75.4 90.3

Panel B. Log number of daily births

Baby Bonus −0.26∗∗∗ −0.15∗∗ −0.14∗∗∗ −0.13∗∗∗

(0.08) (0.07) (0.05) (0.04)

R2 0.77 0.68 0.65 0.63
Share shifted births 13.9 7.8 7.2 6.7

Clusters 225 435 645 855
N Obs. 11,650 22,128 32,731 43,458
Note: Daily births in June versus July within the relevant window, based on the universe of
births in South Australia recorded between 1991 and 2005. All specifications include fixed
effects for: day of year, public holiday, and year × day of week. We cluster standard errors at
the level of the date of birth. Windows relative to 1 July are: births in +/– 7 days (column
1); in +/– 14 days (column 2); in +/– 21 days (column 3) and in +/– 28 days (column 4).
Significance levels * p < .10, ** p < 0.05, *** p < 0.01. Calculations: 1) Number of shifted
births in window W: β ×W/2; 2) Share of shifted births in window W: exp(β/2)−1. See
Gans and Leigh (2009) for details.
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Table A.2: The Effect of the Baby Bonus on Birth Shifting in South Australia

Window (W) +/– 7 days +/– 14 days +/– 21 days +/– 28 days
Public Private Public Private Public Private Public Private

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Number of births, by type of hospital
June2004 −14.18∗∗∗ −14.05∗∗∗ −8.19∗∗ −9.14∗∗∗ −6.96∗∗∗ −7.91∗∗∗ −6.23∗∗∗ −7.12∗∗∗

(3.91) (3.89) (3.22) (3.22) (2.36) (2.41) (2.01) (2.05)

R2 0.76 0.77 0.67 0.68 0.63 0.64 0.61 0.62
N. Obs. 8,538 2,865 16,306 5,350 24,111 7,941 31,999 10,557
N. shifted births 49.6 49.2 57.3 64 73.1 83.1 87.2 100

Panel B. Number of births, by mother patient status
June2004 −14.22∗∗∗ −14.47∗∗∗ −8.32∗∗ −8.85∗∗∗ −7.13∗∗∗ −7.42∗∗∗ −6.36∗∗∗ −6.72∗∗∗

(3.95) (3.76) (3.23) (3.21) (2.36) (2.42) (2.01) (2.09)

R2 0.76 0.76 0.67 0.68 0.64 0.63 0.61 0.61
N. Obs. 7,537 4,065 14,397 7,629 21,366 11,224 28,328 14,942
N. shifted births 49.8 50.6 58.2 61.9 74.9 77.9 89 94.1

Clusters 225 435 645 855

Note: Daily births in June versus July within the relevant window, by hospital type and mother’s patient status,
based on the universe of births in South Australia recorded between 1991 and 2005. All specifications include fixed
effects for: day of year, public holiday, and year × day of week. We cluster standard errors at the level of the date
of birth. Windows relative to July 1, are: births in +/– 7 days (columns 1 and 2); in +/– 14 days (columns 3 and
4); in +/– 21 days (column 5 and 6) and in +/– 28 days (column 7 and 8). Significance levels * p < .10, ** p <
0.05, *** p < 0.01. Calculations: 1) Number of shifted births in window W: β ×W/2; 2) Share of shifted births in
window W: exp(β/2)−1. See Gans and Leigh (2009) for details.
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Table A.3: Balancing Tests on Predetermined Characteristics and Birth Outcomes Without Donut

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Child and Parental Pretreatment Characteristics:
Child is female 0.017 0.010 0.081 509 24,429 24,626 0.483
Birth in private hospital 0.010 0.012 0.379 399 19,149 19,144 0.341
No. of antenatal visits −0.050 0.082 0.544 353 15,492 15,463 10.672
Mother smokes 0.003 0.008 0.665 618 28,878 29,581 0.205
Mother’s age:

35+ −0.003 0.008 0.731 592 28,164 28,673 0.180
40+ −0.002 0.004 0.668 503 24,129 24,355 0.031

Father’s occupation:
High skilled −0.002 0.010 0.805 672 30,479 30,909 0.330
Low skilled 0.015 0.010 0.145 670 30,428 30,851 0.555

Mother’s marital status:
Never Married 0.008 0.007 0.234 531 25,422 25,670 0.116
Married −0.004 0.008 0.618 451 21,684 21,775 0.872
Single −0.003 0.003 0.204 447 21,514 21,611 0.013

Mother’s race:
Caucasian 0.000 0.006 0.962 512 24,562 24,788 0.908
Asian 0.003 0.004 0.469 565 26,879 27,285 0.047
Aboriginal or TSI −0.004 0.004 0.413 470 22,546 22,747 0.045

Child birth outcomes:
Baby weight 32.066 15.364 0.037 383 18,422 18,385 3348.9
Special Nursery −0.005 0.010 0.599 412 19,797 19,828 0.168
NICU −0.002 0.003 0.654 700 33,410 34,054 0.028
PICU 0.000 0.001 0.762 468 22,436 22,639 0.002
Neonatal death −0.001 0.002 0.479 302 14,413 14,437 0.008
Apgar 1 min > 7 −0.007 0.010 0.477 515 24,610 24,788 0.759
Apgar 5 min > 7 −0.000 0.004 0.913 471 22,564 22,748 0.971
Gestational age 0.114 0.067 0.088 293 14,016 14,048 38.758
Preterm birth −0.006 0.007 0.370 721 34,378 35,063 0.148
Obstetric complication −0.026 0.015 0.095 274 12,969 13,115 0.318
C-section birth 0.007 0.012 0.547 708 33,741 34,438 0.308
Note: This table presents the results of balancing tests on pretreatment characteristics of children and their parents as
well as birth outcomes based on birth and perinatal records, when we do not exclude births within seven days of July 1,
2004. Each line corresponds to a separate regression using our main specification. We use local polynomial estimation
with robust bias-corrected inference methods, and CER-optimal bandwidths with standard errors clustered at the level
of birth dates. We exclude 38 children born overseas in 2004. p-values in bold indicate effects that are statistically
significant at least at the 5% level; p-values in italics indicate effects that are statistically significant at the 10% level.
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A.1.3 Quantifying the window of birth shifting: A data-driven choice of donut

We have now confirmed that the introduction of the Baby Bonus in July 2004 did induce some
birth shifting in South Australia, albeit to a lower extent than shown in Gans and Leigh (2009).
We now discuss which births to exclude from our regression discontinuity analyses.

To determine the size of the sample to exclude, we use the following procedure based on a
density continuity test. The principle of the density test is to assess whether the density of births
is similar before and after the threshold. Cattaneo, Jansson and Ma (2020) propose a density
test based on local polynomial smoothing of the empirical cumulative density function of the
running variable at the threshold. We perform a series of nonparametric density continuity test,
where we progressively exclude days closest to the threshold date until we cannot reject the null
that the control and treated observations are similarly distributed.

Table A.4 reports the results of these tests when we exclude zero days (Panel A), one day (Panel
B) and five days (Panel C). Each panel reports the result of the density test according to three
estimation methods: First, in line 1 we report the results of the test under unrestricted inference
with two distinct estimated bandwidths (“U, 2-h”). Second, in line 2 we present the results of
the test under unrestricted inference with one common estimated bandwidth (“U, 1-h”). Last, in
line 3 we report the results of the test under restricted inference with one common estimated
bandwidth (“R, 1-h”). In columns (1) and (2) we read the estimated optimal bandwidths
according to the matching method, and in columns (3) and (4) the number of observations on
each side of the threshold until their respective bandwidth. In column (5) we read p-values of
the density test following each method. Panel A shows that there is evidence of manipulation in
the running variable in the days close to the threshold. We can reject the null at the 10% level
that units before and after the threshold are similarly distributed in two out of three methods.
Panel B shows that excluding one day on each side of the threshold substantially reduces this
manipulation as the p-values sharply increase in all three methods. Yet, we can still reject the
null at the 5% for one method out of three. Panel C shows that once we exclude five days on
each side of the threshold, control and treated units are not statistically differently distributed32.
Thus, we conclude that the minimum donut required for our estimations is five days around the
threshold.

32Binomial tests confirm the findings of Table A.4.
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Table A.4: Nonparametric Density Test for Alternative Donuts

Estimated Bandwidth Observations Density Test

Estimation Method Left Right Left Right p-val.
(1) (2) (3) (4) (5) (6)

Panel A. Excluding zero days

Models with symmetric bandwidth:
Restricted, linear 195 195 9,237 9078 0.726
Restricted, 2nd-order polynomial 556 556 17,626 17540 0.102
Unrestricted, linear 156 156 7,363 7259 0.579
Unrestricted, 2nd-order polynomial 88 88 4,082 4086 0.041

Models with asymmetric bandwidth:
Unrestricted, linear 225 176 10,573 8216 0.646
Unrestricted, 2nd-order polynomial 66 105 2,983 4859 0.078

Panel B. Excluding one day

Models with symmetric bandwidth:
Restricted, linear 193 193 9,095 8897 0.731
Restricted, 2nd-order polynomial 490 490 17,583 17467 0.096
Unrestricted, linear 143 143 6,666 6608 0.488
Unrestricted, 2nd-order polynomial 90 90 4,129 4115 0.068

Models with asymmetric bandwidth:
Unrestricted, linear 190 171 8,952 7955 0.994
Unrestricted, 2nd-order polynomial 67 106 2,977 4838 0.120

Panel C. Excluding five days

Models with symmetric bandwidth:
Restricted, linear 186 186 8,654 8393 0.799
Restricted, 2nd-order polynomial 412 412 17,432 17275 0.077
Unrestricted, linear 117 117 5,239 5159 0.315
Unrestricted, 2nd-order polynomial 95 95 4,190 4093 0.142

Models with asymmetric bandwidth:
Unrestricted, linear 134 165 6,055 7444 0.480
Unrestricted, 2nd order polynomial 70 112 2,986 4917 0.168

Note: This table presents the result of three nonparametric density tests of the running variable, date of
birth, for three alternative donuts (Panel A, zero days; Panel B, one day; Panel C, five days) around
July 1, 2004. We conduct Cattaneo, Jansson and Ma (2020)’s test using the Stata command rddensity
(Cattaneo, Jansson and Ma, 2018). Column (1) indicates the local polynomial fit method and the
bandwidth estimation method. Columns (2) and (3) indicate the estimated bandwidth on either side
of the threshold (if applicable), and columns (4) and (5) indicate the number of observations used in
the test on either side of the threshold. Column (6) presents the p-value of each density test comparing
the distribution of births on each side of the threshold to a Gaussian approximation. Large p-values
indicate that the distribution of births on either side of the threshold are not statistically different from
one another. The sample used is the universe of children born in South Australia between July 1, 2003,
and July 1, 2005, excluding 93 children born abroad during this time. p-values in bold indicate effects
that are statistically significant at least at the 5% level; p-values in italics indicate effects that are
statistically significant at the 10% level.
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A.1.4 The impact of birth shifting for our findings: Results without donut restriction

Table A.5 presents the main results in the full sample. Comparing these results to our results in
Table 5 indicates how much our results would be biased if we had omitted our donut in our main
specification; this bias arises because of selection into treatment on observable and unobservable
characteristics that are correlated with health outcomes. This bias has an ambiguous sign. On
the one hand, one could expect babies whose birth was shifted to have better health at birth but
worse health later in life or additional health problems that required hospital attention. Gans and
Leigh (2009) show that shifted babies were more likely to be postponed vaginal births eventually
delivered by Cesarean-section, and there is some evidence that babies delivered by C-section
experience worse health outcomes33. On the other hand, babies whose birth was shifted may
belong to income-constrained families, who may be less likely to use hospital care in the child’s
first year of life. Our estimated treatment effects in Table A.5 are slightly larger in magnitude
than when we exclude births within seven days of the threshold (Table 5), and slightly smaller for
PPP presentations; these findings indicate that birth-shifting events induced a small negative bias
on the true treatment effect of the Australian Baby Bonus on hospital presentations in general
and a small positive bias on potentially preventable pediatric hospitalization. This sign of the
bias would suggest that babies whose birth was shifted are less likely than other babies to be
exposed to hospitals in their first year of life, either because they are healthier babies or because
of omitted variables driving both parental sorting into birth-shifting and demand for hospital
care. The positive bias we find for PPP presentations suggests rather the latter: babies born
closest to the threshold have more PPP presentations than babies born slightly later. Overall, we
would have overestimated the impact of the Baby Bonus if we failed to exclude births closest to
the threshold date.

33For example, a recent meta-analysis based on 13 studies has shown that C-section babies have an increased risk of
developing chronic respiratory problems during childhood (Keag, Norman and Stock, 2018).
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Table A.5: The Effects of the Australian Baby Bonus on Hospital Presentations Within the First Year of Life
Without Donut

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Health Care Utilization −0.088 0.032 0.007 285 13,543 13,616 0.193
Index [std.]

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.031 0.019 0.106 187 8,848 8,728 0.451
Emergency department −0.024 0.016 0.123 163 7,667 7,652 0.311
Inpatient services −0.039 0.016 0.014 224 10,524 10,518 0.311

Panel B. Presentations for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.021 0.015 0.156 184 8,691 8,602 0.205
Admission to ward −0.028 0.011 0.013 196 9,237 9,148 0.129

Inpatient services:
Urgent, acute or severe problem −0.033 0.012 0.005 236 11,121 11,158 0.170
Admission to ward 0.004 0.007 0.497 176 8,313 8,286 0.027
Overnight admission −0.026 0.013 0.038 279 13,191 13,314 0.205

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.023 0.015 0.125 174 8,182 8,203 0.218
Any PPP presentation, ED −0.029 0.014 0.037 152 7,161 7,135 0.181
Any PPP presentation, IS −0.015 0.010 0.109 193 9,138 9,040 0.104

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.005 0.005 0.270 160 7,519 7,508 0.017
Visit with med. referral −0.002 0.007 0.835 172 8,147 8,147 0.054

Inpatient services:
Planned visit −0.002 0.007 0.835 172 8,147 8,147 0.026
Visit with med. referral −0.012 0.008 0.173 231 10,918 10,985 0.095
Booked elective procedure 0.002 0.006 0.737 242 11,433 11,419 0.057

Note: This table presents the effects of the Australian Baby Bonus on hospital presentation of infants, when we do not exclude
births within seven days of July 1, 2004. Each line corresponds to a separate regression using our main specification. We use
local polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths with standard errors
clustered at the level of birth dates. We exclude 38 children born overseas in 2004. p-values in bold indicate effects that are
statistically significant at least at the 5% level; p-values in italics indicate effects that are statistically significant at the 10%
level.
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Appendix B Additional Tables and Figures

Figure B.1: Distribution of Hospitalizations at Ages 0–1
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2980

1239

559

267
133 79 41 21 15 11 5 9 4 2 2118770

10
00

20
00

30
00

N
um

be
r o

f c
hi

ld
re

n

0 2 4 6 8 10 12 14 16

Number of presentations

(b) Potentially preventable pediatric hospitalizations
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(c) Respiratory problems recorded by medical officer in
discharge files based on ICD-10 diagnosis code
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(d) Respiratory problems recorded at presentation by
triage nurse
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Source: Potentially preventable pediatric hospitalizations: Integrated South Australian Activity Collection (ISAAC);
Emergency department presentations and emergency department presentations for respiratory problems: South
Australian Emergency Department Data Collection (EDDC). Data are presented for the 2004 birth cohort, excluding
37 babies born overseas.
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Table B.1: Summary Statistics of Hospitalizations at Ages 0–1

Mean Sd

Share of children with records before age 1:

Health Care Utilization Index [std.] 0.183 0.160

Health Care Utilization: Subitems

Hospital presentations:
Any presentation, either ED or inpatient services 0.455 0.073
Any ED presentation 0.317 0.067
Any inpatient record 0.301 0.070

Presentation for urgent/acute problems:
Emergency department:

Any presentation for an urgent, acute or severe problem 0.205 0.058
Any presentation with admission to ward 0.123 0.047

Inpatient services:
Any presentation for an urgent, acute or severe problem 0.157 0.053
Any presentation with admission to ward 0.025 0.025
Any presentation with overnight admission 0.195 0.062

Potentially preventable pediatric presentations:
Any PPP presentation 0.221 0.059
Any PPP presentation, ED 0.187 0.056
Any PPP presentation, inpatient services 0.094 0.044

Additional Items (not in Health Care Utilization Index)

Planned visits or presentations with medical referral:
Emergency department:

Any planned visit 0.017 0.019
Any visit with medical referral 0.051 0.033

Inpatient services:
Any planned visit 0.024 0.022
Any visit with medical referral 0.089 0.042
Any visit for an elective intervention 0.057 0.034

Note: This table presents descriptive statistics of the main outcome variables. The health
care utilization index sums up hospital presentations for babies from birth until age 1
excluding birth-related problems. This index is standardised to mean 0 and standard
deviation 1 for all babies born in South Australia between 1991 to 2016. The sample used
in this table includes all babies born in South Australia between July 1, 2003 and July 1,
2005. For all variables, the sample contains 35,236 observations.
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Figure B.2: Daily Number of Births in South Australia (2002–2006)
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Note: This figure presents a histogram of daily births around July 1, 2004, the date marking
the implementation of the Australian Baby Bonus. Each bar corresponds to a date of birth.
The sample underlying this figure excludes all births within seven days around July 1, 2004,
and is chosen by the local polynomial density test of Cattaneo, Jansson and Ma (2020, 2018),
implemented in Stata using the command rddensity (January 2020 update).

Table B.2: Density Test 2: Binomial Density Test

Window Furthest Day Observations Density Test
1/2 Length Away from Threshold p-value

Left Right
(1) (2) (3) (4) (5)

1 8 35 55 0.05
. . . . . . .. . . . . . .
100 107 4,748 4,651 0.32

Share p-values < 0.1 0.03
Share p-values < 0.5 0.01

Note: This table presents the results of 100 nested binomial tests, performed using rdwinselect.
In this procedure, we compare the number of daily births to a binomial distribution with mean 0.5.
Column (1) indicates the half-length of the sample evaluated, column (2) the distance from the
cutoff date of the furthest days in the sample evaluated. Columns (3) and (4) display the number
of observations on each side of the threshold in the sample evaluated, and column (5) present
p-values from the binomial test performed. Large p-values indicate that the distribution of births
are not statistically different from a binomial distribution with mean 0.5. The sample used is the
universe of children born in South Australia between July 1, 2003, and July 1, 2005, excluding 93
children born abroad during this time, and all children born within seven days of July 1, 2004.
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Table B.3: The Effects of the Australian Baby Bonus on Number of Hospital Presentations Within the First Year
of Life

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.150 0.086 0.082 146 6,561 6,453 1.07
Emergency department −0.121 0.064 0.060 112 4,944 4,879 0.59
Inpatient services −0.060 0.032 0.061 267 12,362 12,371 0.48

Panel B. Presentation for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.059 0.029 0.038 161 7,272 7,126 0.32
Admission to ward −0.060 0.021 0.005 159 7,194 7,016 0.18

Inpatient services:
Urgent, acute or severe problem −0.059 0.022 0.008 215 9,857 9,677 0.24
Admission to ward 0.004 0.009 0.655 202 9,265 9,051 0.03
Overnight admission −0.031 0.019 0.109 305 14,297 14,152 0.26

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.110 0.041 0.007 143 6,480 6,355 0.41
Any PPP presentation, ED −0.079 0.035 0.024 120 5,302 5,221 0.28
Any PPP presentation, IS −0.047 0.014 0.001 236 10,855 10,779 0.13

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.013 0.007 0.059 144 6,480 6,355 0.02
Visit with med. referral 0.000 0.012 0.971 146 6,619 6,497 0.06

Inpatient services:
Planned visit 0.000 0.007 0.997 265 12,245 12,269 0.03
Visit with med. referral −0.023 0.021 0.274 191 8,704 8,505 0.12
Booked elective procedure 0.001 0.013 0.961 217 9,921 9,731 0.07

Note: : This table presents results on the effects of the Australian Baby Bonus on the number of hospital presentations
within the first year of life. Each line corresponds to a separate regression using our main specification. We use local
polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths with standard errors
clustered at the level of birth dates. We exclude 38 children born overseas in 2004 and all births within seven days of July
1, 2004. p-values in bold indicate effects that are statistically significant at least at the 5% level; p-values in italics indicate
effects that are statistically significant at the 10% level.
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Table B.4: The Effects of the Australian Baby Bonus on Detailed Medical Diagnostics Within the First Year of
Life

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Presentations by detailed ICD-10-AM diagnostic chapter and presenting problem:
Emergency Department ICD-10-AM Chapter:
Respiratory problems −0.032 0.012 0.010 168 7,666 7,518 0.128
Injuries, trauma and poisoning 0.004 0.007 0.595 182 8,316 8,069 0.034
Infections −0.012 0.013 0.365 134 5,958 5,882 0.087
Digestive problems −0.011 0.007 0.123 156 7,072 6,898 0.025
Skin problems 0.001 0.006 0.854 164 7,491 7,290 0.017
Externally caused problems 0.000 0.000 0.573 159 7,194 7,016 0.000
Unspecified problems −0.019 0.012 0.098 160 7,228 7,077 0.070
Nervous system problems 0.001 0.001 0.205 170 7,731 7,587 0.001
Eye- and ear-related problems −0.001 0.006 0.916 147 6,619 6,497 0.014

Emergency Department Triage Nurse:
Respiratory problems −0.038 0.012 0.001 164 7,438 7,252 0.113
Injuries, trauma and poisoning 0.011 0.006 0.059 163 7,376 7,221 0.022
Infections −0.008 0.010 0.456 157 7,114 6,933 0.076
Digestive problems −0.026 0.016 0.106 88 3,791 3,725 0.070
Skin problems 0.008 0.008 0.346 141 6,360 6,285 0.034
Unspecified problems −0.011 0.015 0.462 151 6,828 6,671 0.074
Nervous system problems −0.001 0.003 0.822 153 6,957 6,811 0.006
Eye- and ear-related problems −0.009 0.008 0.286 130 5,768 5,662 0.019

Inpatient Services: ICD-10-AM Chapter
Respiratory problems −0.037 0.008 0.000 267 12,362 12,371 0.077
Injuries, trauma and poisoning −0.003 0.003 0.345 298 13,960 13,821 0.009
Infections −0.006 0.006 0.319 206 9,483 9,235 0.030
Digestive problems −0.005 0.005 0.290 218 9,973 9,790 0.015
Skin problems 0.004 0.002 0.070 155 7,072 6,898 0.004
Externally caused problems −0.012 0.006 0.047 302 14,151 14,032 0.052
Unspecified problems −0.001 0.006 0.925 205 9,426 9,202 0.027
Nervous system problems −0.001 0.001 0.549 264 12,146 12,133 0.002
Eye- and ear-related problems 0.003 0.003 0.400 169 7,731 7,587 0.007

Note: This table presents the results of regressions of the effect of the Australian Baby Bonus on hospital presentations of
babies within their first year of life. Each line corresponds to a separate regression using our main specification, where
outcomes are specific diagnostics. We use local polynomial estimation with robust bias-corrected inference methods, and
CER-optimal bandwidths with standard errors clustered at the level of birth dates. We exclude 38 children born overseas
in 2004 and all births within seven days of July 1, 2004. p-values in bold indicate effects that are statistically significant
at least at the 5% level; p-values in italics indicate effects that are statistically significant at the 10% level.
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Table B.5: The Effects of the Australian Baby Bonus on Hospital Presentations at Ages 1–5

Child age: 1–2 2–3 3–4 4–5

Coef. Est. Sd.err. Coef. Est. Sd.err. Coef. Est. Sd.err. Coef. Est. Sd.err.
(1) (2) (3) (4) (5) (6) (7) (8)

Health Care Utilization −0.028 0.044 0.009 0.031 −0.029 0.033 0.004 0.028
Index [std.]

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.006 0.031 0.004 0.019 −0.022∗ 0.013 0.010 0.009
Emergency department −0.020 0.033 −0.001 0.021 −0.019 0.013 0.013 0.009
Inpatient service 0.007 0.011 0.001 0.008 −0.005 0.006 −0.002 0.006

Panel B. Presentation for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.030 0.022 −0.001 0.015 −0.004 0.009 0.007 0.006
Admission to ward −0.007 0.013 0.004 0.009 −0.008 0.007 −0.001 0.006

Inpatient services:
Urgent, acute or severe problem 0.002 0.011 0.000 0.008 −0.007 0.005 −0.002 0.005
Admission to ward −0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001
Overnight admission −0.001 0.005 −0.001 0.004 0.001 0.003 0.001 0.002

Panel D. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.017 0.022 0.014 0.016 −0.002 0.010 −0.002 0.008
Any PPP presentation, ED −0.026 0.022 0.013 0.014 0.009 0.010 −0.003 0.008
Any PPP presentation, IS −0.002 0.012 −0.005 0.007 −0.009∗∗ 0.005 −0.001 0.004

Additional Items (not in Health Care Utilization Index)

Panel C. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.007 0.005 0.008∗∗ 0.004 0.001 0.002 −0.001 0.001
Visit with med. referral −0.004 0.008 0.003 0.007 0.001 0.003 0.001 0.004

Inpatient services:
Planned visit 0.017∗∗∗ 0.007 −0.001 0.004 0.000 0.004 0.002 0.003
Visit with med. referral 0.013 0.008 0.003 0.005 0.002 0.005 0.000 0.004
Booked elective 0.016∗∗ 0.007 0.002 0.004 0.002 0.005 0.000 0.004

procedure

Note: This table presents RD treatment effects of the Baby Bonus on hospital presentations at ages 1–5. Each line corresponds
to a separate regression using our main specification. We use local polynomial estimation with robust bias-corrected inference
methods, and CER-optimal bandwidths with standard errors clustered at the level of birth dates. We exclude 38 children born
overseas in 2004 and all births within seven days of July 1, 2004. Panel A presents results in the second year of life, Panel B
presents results in the third year, Panel C presents results in the fourth year and Panel D presents results in the fifth year of
life. *, **, and *** denote effects significant at the 10%, 5% and 1% respectively.
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Table B.6: The Effects of the Australian Baby Bonus on Diagnoses at Ages 1–5

Child age: 1–2 2–3 3–4 4–5

Coef. Est. Sd.err. Coef. Est. Sd.err. Coef. Est. Sd.err. Coef. Est. Sd.err.
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Potentially preventable pediatric presentations (combined ED/IS):
Bronchiolitis −0.003 0.007 −0.002 0.002 0.000 0.001 0.000 0.000
Gastroenteritis 0.015 0.012 0.007 0.008 −0.001 0.005 −0.001 0.003
Laryngitis 0.002 0.008 0.004 0.004 −0.001 0.004 0.001 0.003
Otitis media −0.011∗ 0.006 0.001 0.004 0.001 0.003 0.001 0.002
Respiratory infection −0.026∗ 0.014 −0.003 0.009 0.004 0.006 0.004 0.003

Panel B. Presentations by ICD-10-AM diagnostic chapter and presenting problem:
Emergency department:

Respiratory problems −0.015 0.016 0.004 0.011 0.003 0.006 0.003 0.004
Injuries, trauma & poisoning −0.026∗ 0.016 −0.002 0.008 0.002 0.005 −0.002 0.005
Infections −0.019 0.019 0.009 0.007 −0.006 0.006 0.004 0.003
Digestive problems 0.006 0.004 −0.005 0.004 −0.001 0.002 0.000 0.002
Skin problems 0.000 0.005 −0.001 0.003 0.000 0.002 0.000 0.002
Unspecified problems −0.023∗ 0.012 0.000 0.007 −0.003 0.005 0.001 0.005
Nervous system problems 0.000 0.002 0.000 0.002 0.000 0.001 −0.001 0.001
Eye- and ear-related problems −0.011∗ 0.006 0.002 0.004 0.003 0.003 −0.001 0.003

Inpatient services:
Respiratory problems −0.001 0.008 0.002 0.005 −0.002 0.003 0.002 0.003
Injuries, trauma & poisoning −0.002 0.004 0.006∗ 0.003 −0.002 0.002 −0.001 0.002
Infections 0.005 0.006 −0.009∗ 0.005 0.000 0.002 −0.002 0.002
Digestive problems 0.003∗ 0.002 −0.001 0.002 −0.002 0.002 −0.002 0.002
Skin problems −0.002 0.002 −0.001 0.001 0.000 0.001 0.001 0.001
Externally caused problems 0.003 0.003 0.003 0.002 −0.001 0.002 0.000 0.001
Unspecified problems 0.005 0.004 0.007∗∗∗ 0.002 −0.001 0.002 0.000 0.001
Nervous system problems 0.001 0.002 −0.002 0.002 −0.004∗∗ 0.002 −0.002∗ 0.001
Eye- and ear-related problems 0.002 0.004 −0.002 0.003 0.002 0.002 0.000 0.002

Note: This table presents RD treatment effects of the Baby Bonus on diagnoses for presentations at ages 2–5. Each line
corresponds to a separate regression using our main specification. We use local polynomial estimation with robust
bias-corrected inference methods, and CER-optimal bandwidths with standard errors clustered at the level of birth
dates. We exclude 38 children born overseas in 2004 and all births within seven days of July 1, 2004. Panel A presents
results in the second year of life, Panel B presents results in the third year, Panel C presents results in the fourth year
and Panel D presents results in the fifth year of life. *, **, and *** denote effects significant at the 10%, 5% and 1%
respectively.
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Table B.7: Sensitivity of Main Results to Clustering Choice

Bandwidth Method: MSE-optimal CER-optimal

Coef. Sd.err. Coef. Sd.err.

(1) (2) (3) (4)

Health Care Utilization −0.165∗∗∗ (0.027) −0.095∗∗∗ (0.034)
Index [std.]

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.020 (0.020) 0.000 (0.024)
Emergency department −0.024 (0.020) −0.025 (0.024)
Inpatient service −0.044∗∗∗ (0.015) −0.018 (0.019)

Panel B. Presentations for urgent, acute or severe problems (by hospital service):
Emergency department:
Urgent, acute or severe problem −0.020 (0.016) −0.020 (0.019)
Admission to ward −0.038∗∗∗ (0.013) −0.038∗∗ (0.016)

Inpatient services:
Urgent, acute or severe problem −0.042∗∗∗ (0.012) −0.031∗∗ (0.015)
Admission to ward 0.002 (0.005) 0.007 (0.007)
Overnight admission −0.027∗∗ (0.011) −0.018 (0.013)

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP −0.034∗∗ (0.017) −0.033 (0.021)
Any PPP, ED −0.031∗ (0.016) −0.037∗∗ (0.021)
Any PPP, inpatient services −0.034∗∗∗ (0.009) −0.025∗∗ (0.011)

Additional Items (not in Health Care Utilization Index)

Panel D. Planned visits or with referral (by hospital service):
Emergency department:

Planned visit −0.010∗ (0.005) −0.009 (0.007)
Visit with med. referral 0.000 (0.009) 0.002 (0.011)

Inpatient services:
Planned visit −0.005 (0.004) 0.001 (0.005)
Visit with med. referral −0.016∗ (0.010) −0.002 (0.012)
Booked elective procedure −0.001 (0.007) 0.004 (0.009)

Note: This table presents the effects of the Australian Baby Bonnus on hospital presentation of infants
without clustering standard errors, using MSE- and CER-optimal bandwidths. Each row reports the
results of a separate regression analysis using local linear estimation, robust bias-corrected inference
and optimal bandwidth selection. We exclude children born overseas, and all births within seven days
of July 1, 2004. *, **, and *** denote effects significant at the 10%, 5% and 1% respectively.
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Table B.8: Sensitivity of Main Results to Observations Near the Threshold

Exclude births within: 5 days 8 days 12 days 15 days

Coef. Est. Sd.err. Coef. Est. Sd.err. Coef. Est. Sd.err. Coef. Est. Sd.err.
(1) (2) (3) (4) (5) (6) (7) (8)

Health Care Utilization −0.095∗∗∗ 0.036 −0.094∗∗∗ 0.035 −0.088∗∗ 0.034 −0.073∗∗ 0.037
Index [std.]

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.017 0.020 −0.007 0.022 −0.010 0.022 0.005 0.024
Emergency department −0.024 0.018 −0.019 0.020 −0.015 0.022 0.002 0.022
Inpatient service −0.032∗ 0.017 −0.034∗∗ 0.017 −0.038∗∗ 0.017 −0.041∗∗ 0.018

Panel B. Presentations for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.015 0.017 −0.012 0.018 −0.008 0.020 0.007 0.021
Admission to ward −0.035∗∗∗ 0.012 −0.037∗∗∗ 0.013 −0.036∗∗ 0.014 −0.027∗ 0.015

Inpatient services:
Urgent, acute or severe problem −0.032∗∗ 0.013 −0.037∗∗∗ 0.014 −0.039∗∗∗ 0.014 −0.036∗∗ 0.015
Admission to ward 0.006 0.008 0.001 0.007 −0.006 0.006 −0.010∗ 0.006
Overnight admission −0.023∗ 0.012 −0.023∗ 0.013 −0.028∗∗ 0.013 −0.029∗∗ 0.013

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.029∗ 0.017 −0.027 0.019 −0.023 0.020 −0.005 0.020
Any PPP presentation, ED −0.030∗ 0.016 −0.027 0.018 −0.021 0.018 −0.005 0.018
Any PPP presentation, IS −0.026∗∗∗ 0.010 −0.029∗∗∗ 0.010 −0.030∗∗∗ 0.011 −0.028∗∗ 0.012

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.007 0.005 −0.012∗∗ 0.005 −0.013∗∗ 0.006 −0.009 0.006
Visit with med. referral 0.003 0.009 0.001 0.010 −0.002 0.011 0.000 0.012

Inpatient services:
Planned visit −0.001 0.004 0.002 0.005 0.009 0.006 0.003 0.006
Visit with med. referral −0.010 0.009 −0.011 0.010 −0.015 0.011 −0.016 0.013
Booked elective 0.003 0.007 0.003 0.008 0.001 0.008 −0.006 0.008

procedure

Note: This table presents the sensitivity of our main results to observations close to the threshold, that is, sensitivity to our
choice of donut. In Panel A, results also exclude all births within five days of July 1, 2004; Panel B excludes all births
within 8 days of the threshold; Panel C excludes all births within 12 days of the threshold; and Panel D excludes all births
within 15 days of the threshold. Each donut has the same number of weekend days on each side of the threshold. Each
line corresponds to a separate regression using our main specification. We use local polynomial estimation with robust
bias-corrected inference methods, and CER-optimal bandwidths with standard errors clustered at the level of birth dates. We
exclude 38 children born overseas in 2004. *, **, and *** denote effects significant at the 10%, 5% and 1% respectively.
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Table B.9: The Effects of the Australian Baby Bonus on on Selective Abortions

Coef. Sd.err. p-value Bandwidth N.Obs. Pre-threshold
Est. 1/2 length Mean

Left Right
(1) (2) (3) (4) (5) (6) (7)

Past Pregnancies:
Any past pregnancy −0.015 0.016 0.337 313 14,639 14,529 0.689
Number of live births −0.016 0.027 0.567 419 19,937 19,783 0.916
Any miscarriage −0.011 0.011 0.311 439 20,859 20,742 0.226

Abortions:
Any abortion −0.006 0.007 0.340 671 31,792 32,261 0.136
Number of abortions −0.007 0.010 0.508 664 31,378 31,841 0.177
Days since last abortion −1.276 31.730 0.968 392 8,892 8,511 1092.650

Note: This table presents additional balancing tests related to selective abortions and fertility decisions induced by the
announcement of the Baby Bonus on May 12, 2004. Because the announcement was so close to the implementation of
the policy on July 1, 2004, and because abortions are restricted in South Australia, we should not expect to find any
significant differences between babies before and after the threshold date in the distribution of pregnancy terminations
among their mothers. Each line corresponds to a separate regression using our main specification. We use local
polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths with standard
errors clustered at the level of birth dates. We exclude 38 children born overseas in 2004 and all births within seven
days of July 1, 2004. p-values in bold indicate effects that are statistically significant at least at the 5% level; p-values
in italics indicate effects that are statistically significant at the 10% level.
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Table B.10: Sensitivity of Main Results to Optimal Bandwidth Selection Method

Bandwidth Method: CER-optimal, sym. MSE-optimal, sym. CER-optimal, asym.

Coef. Sd.err. Coef. Sd.err. Coef. Sd.err.

(1) (2) (3) (4) (5) (6)

Health Care Utilization −0.098∗∗∗ 0.034 −0.166∗∗∗ 0.03 −0.099∗∗∗ 0.033
Index [std.]

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.013 0.021 −0.020 0.020 −0.024 0.018
Emergency department −0.024 0.020 −0.022 0.018 −0.010 0.016
Inpatient service −0.034∗∗ 0.017 −0.044∗∗∗ 0.015 −0.047∗∗∗ 0.015

Panel B. Presentation for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.017 0.018 −0.020 0.016 −0.012 0.015
Admission to ward −0.038∗∗∗ 0.013 −0.038∗∗∗ 0.012 −0.037∗∗∗ 0.011

Inpatient services:
Urgent, acute or severe problem −0.037∗∗∗ 0.013 −0.042∗∗∗ 0.012 −0.041∗∗∗ 0.012
Admission to ward 0.002 0.007 0.001 0.006 −0.001 0.005
Overnight admission −0.022∗ 0.012 −0.027∗∗ 0.011 −0.034∗∗∗ 0.011

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.033∗ 0.019 −0.034∗∗ 0.017 −0.025 0.016
Any PPP presentation, ED −0.032∗ 0.018 −0.030∗ 0.016 −0.019 0.015
Any PPP presentation, IS −0.028∗∗∗ 0.010 −0.034∗∗∗ 0.009 −0.027∗∗∗ 0.009

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.010∗ 0.005 −0.010∗∗ 0.005 −0.005 0.004
Visit with med. referral 0.002 0.009 −0.001 0.009 −0.003 0.007

Inpatient services:
Planned visit −0.001 0.004 −0.005 0.004 −0.004 0.004
Visit with med. referral −0.010 0.010 −0.016∗ 0.009 −0.012 0.008
Booked elective procedure 0.003 0.008 −0.001 0.007 0.000 0.006

Note: This table presents the effects of the Australian Baby Bonus on hospital presentation of infants using three
different optimal bandwidth selection methods (CER, MSE and Two-sided CER). Each line represents a separate
regression analysis, using our main specification. We use local polynomial estimation with robust bias-corrected
inference methods, and optimal bandwidths with standard errors clustered at the level of birth dates. We exclude
38 children born overseas in 2004 and all births within seven days of July 1, 2004. *, **, and *** denote effects
significance at the 10%, 5% and 1% respectively.
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Table B.11: Sensitivity of Main Results to Narrower Bandwidth

Bandwidth Method: CER-optimal 1/2 CER-optimal 90 days 60 days

Coef. Sd.err. Coef. Sd.err. Coef. Sd.err. Coef. Sd.err.

(1) (2) (3) (4) (5) (6) (7) (8)

Health Care Utilization −0.098∗∗∗ 0.034 −0.082 0.069 −0.224∗∗ 0.097 −0.321∗∗ 0.136
Index [std.]

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.013 0.021 −0.078 0.052 −0.072 0.051 −0.125∗ 0.073
Emergency department −0.024 0.020 −0.105∗∗ 0.046 −0.092∗∗ 0.040 −0.135∗∗ 0.058
Inpatient service −0.034∗∗ 0.017 −0.007 0.035 −0.007 0.041 −0.035 0.059

Panel B. Presentations for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.017 0.018 −0.075 0.047 −0.069 0.045 −0.123∗ 0.064
Admission to ward −0.038∗∗∗ 0.013 −0.073∗∗ 0.032 −0.070∗∗ 0.031 −0.101∗∗ 0.047

Inpatient services:
Urgent, acute or severe problem −0.037∗∗∗ 0.013 −0.042 0.031 −0.042 0.035 −0.050 0.053
Admission to ward 0.002 0.007 0.047∗∗ 0.021 0.055∗∗ 0.024 0.091∗∗ 0.038
Overnight admission −0.022∗ 0.012 0.031 0.025 0.029 0.039 0.050 0.055

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.033∗ 0.019 −0.108∗∗ 0.045 −0.100∗∗ 0.041 −0.117∗∗ 0.036
Any PPP presentation, ED −0.032∗ 0.018 −0.110∗∗ 0.046 −0.094∗∗ 0.039 −0.121∗∗ 0.053
Any PPP presentation, IS −0.028∗∗∗ 0.010 −0.019 0.022 −0.022 0.026 −0.009 0.037

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.010∗ 0.005 −0.012 0.017 −0.016 0.014 −0.003 0.021
Visit with med. referral 0.002 0.009 0.019 0.021 0.016 0.018 0.009 0.025

Inpatient services:
Planned visit −0.001 0.004 0.006 0.010 −0.024∗ 0.014 −0.014 0.021
Visit with med. referral −0.010 0.010 0.020 0.023 0.025 0.025 0.085∗∗ 0.035
Booked elective 0.003 0.008 0.017 0.017 0.018 0.020 0.062∗∗ 0.029

procedure

Note: This table presents the effects of the Australian Baby Bonus on hospital presentation of infants using the CER-optimal
bandwidth (our preferred specification), half of the CER-optimal bandwidth, and two fixed bandwidths at 90 days and 60
days around the threshold. Each line represents a separate regression analysis using our main specification. We use local
polynomial estimation with robust bias-corrected inference methods, clustering standard errors at the level of birth dates. We
exclude 38 children born overseas in 2004 and all births within seven days of July 1, 2004. *, **, and *** denote effects
significance at the 10%, 5% and 1% respectively.
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Table B.12: Main Results and Placebo Eligibility Thresholds

Coef. Sd.err. Bandwidth Est. rank
Est. 1/2 length at true cutoff P-value

Asymp. Rand.-based
(1) (2) (3) (4) (5) (6)

Health Care Utilization Index [std.] −0.098 0.034 306.2 2 0.004 0.022

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service −0.013 0.021 175.3 91 0.532 1.006
Emergency department −0.024 0.020 152.1 5 0.230 0.055
Inpatient service −0.034 0.017 214.6 63 0.040 0.696

Panel B. Presentations for urgent, acute or severe problems (by hospital service):
Emergency department:

Urgent, acute or severe problem −0.017 0.018 171.9 37 0.369 0.409
Admission to ward −0.038 0.013 173.3 4 0.004 0.044

Inpatient services:
Urgent, acute or severe problem −0.037 0.013 206.7 9 0.005 0.099
Admission to ward 0.002 0.007 206.0 158 0.761 0.265
Overnight admission −0.022 0.012 298.8 83 0.074 0.917

Panel C. Potentially preventable pediatric presentations (by hospital service):
Any PPP presentation −0.033 0.019 152.6 10 0.083 0.110
Any PPP presentation, ED −0.032 0.018 142.1 11 0.071 0.122
Any PPP presentation, IS −0.028 0.010 214.8 24 0.005 0.265

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with referral from medical staff (by hospital service):
Emergency department:

Planned visit −0.010 0.005 146.5 4 0.074 0.044
Visit with med. referral 0.002 0.009 151.9 108 0.845 0.818

Inpatient services:
Planned visit −0.001 0.004 289.4 123 0.882 0.652
Visit with med. referral −0.010 0.010 198.3 94 0.308 0.972
Booked elective procedure 0.003 0.008 230.2 162 0.657 0.221

Note: This table presents the results of permutation tests following Ganong and Jäger (2018). Each line corresponds
to the result of a separate regression using our main specification at the true threshold (July 1, 2004). We use local
polynomial estimation with robust bias-corrected inference methods, and CER-optimal bandwidths with standard errors
clustered at the level of birth dates. We exclude 38 children born overseas in 2004 and all births within seven days of
July 1, 2004. For each outcome variable, column (4) presents the rank of the coefficient estimate at the true threshold
compared to coefficient estimates at 180 alternative thresholds, ranging from -90 to +90 around the true threshold.
Column (5) presents asymptotic p-values, and column (6) randomization-based p-values.
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Table B.13: The Effects of the Australian Baby Bonus on Predetermined
Characteristics and Birth Outcomes in Prepolicy Years

Placebo Prepolicy Years Thresholds

July 1, 2002 July 1, 2003
Coef. Est. Sd.err. Coef. Est. Sd.err.

(1) (2) (3) (4)

Child and Parental Predetermined Characteristics:
Mother’s age:
35+ 0.001 0.009 −0.003 0.008
40+ −0.008∗∗ 0.004 0.000 0.004

Father’s occupation:
High skilled 0.010 0.012 −0.002 0.012
Low skilled −0.007 0.011 −0.004 0.013

Mother’s marital status:
Never Married −0.001 0.009 −0.008 0.007
Married 0.007 0.009 0.009 0.007
Single −0.006 0.004 0.001 0.003

Mother’s race:
Caucasian 0.002 0.008 −0.001 0.006
Asian −0.002 0.005 0.001 0.004
Aboriginal or TSI 0.001 0.006 −0.001 0.004

Child birth outcomes:
Female 0.005 0.014 −0.005 0.013
Baby weight 10.754 16.199 12.134 14.284
Special Nursery 0.017 0.011 −0.013 0.011
NICU −0.002 0.005 −0.001 0.004
PICU 0.003∗∗ 0.001 −0.001 0.001
Neonatal death 0.001 0.001 0.000 0.001
Apgar 1 min > 7 −0.022∗ 0.012 0.004 0.011
Apgar 5 min > 7 0.002 0.004 0.000 0.004
Gestational age −0.039 0.062 −0.016 0.053
Preterm birth 0.000 0.010 0.001 0.009
Obstetric complication 0.009 0.015 −0.043∗∗∗ 0.013
C-section −0.004 0.018 −0.014 0.014
Private hospital 0.033 0.024 0.001 0.014
No. antenatal visits −0.085 0.110 0.178∗∗ 0.094
Mother smokes 0.001 0.010 −0.014 0.010

Note: This table presents RD treatment effects of the Baby Bonus on predetermined
characteristics of children and their parents as well as birth outcomes based on
birth and perinatal records in prepolicy years (2002 and 2003). Each line x panel
corresponds to a separate regression using our main specification. We use local poly-
nomial estimation with robust bias-corrected inference methods, and CER-optimal
bandwidths with standard errors clustered at the level of birth dates. We exclude 38
children born overseas in 2004 and all births within seven days of July 1, 2004. *, **,
and *** denote effects significant at the 10%, 5% and 1% respectively.
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Figure B.3: Location of Public and Private Hospitals by District Level of Disadvantage in South Australia

Note: This map presents the universe of hospitals in South Australia with an Emergency Department,
classified by district-level disadvantage measured in the 2001 census. Public hospitals are observable
in the Early Childhood Development Project data and are shown with a blue hospital cross. Private
hospitals are not in ECDP data and are shown with a red hospital cross. Data source: SA Health, ABS
Census 2001.
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Table B.14: Robustness of Main Results to Multiple Hypothesis Testing

P-Values
Original Romano–Wolf Holm

(1) (2) (3)

Health Care Utilization Index [std.] 0.004 0.014 0.018

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service 0.532 0.935 1.000
Emergency department 0.230 0.617 0.839
Inpatient service 0.040 0.123 0.052

Panel B. Presentations for urgent, acute or severe problems:
Emergency department:
Urgent, acute or severe problem 0.369 0.818 1.000
Admission to ward 0.004 0.014 0.017

Inpatient services:
Urgent, acute or severe problem 0.005 0.016 0.015
Admission to ward 0.761 0.980 1.000
Overnight admission 0.074 0.246 0.538

Panel C. Potentially preventable pediatric presentations:
Any PPP presentation 0.083 0.246 0.180
Any PPP presentation, ED 0.071 0.242 0.288
Any PPP presentation, IS 0.005 0.016 0.016

Additional Items (not in Health Care Utilization Index)

Panel D. Planned visits/presentations with medical referral:
Emergency department:
Planned visit 0.074 0.246 0.230
Visit with med. referral 0.845 0.980 1.000

Inpatient services:
Planned visit 0.882 0.980 0.875
Visit with med. referral 0.308 0.744 0.930
Booked elective procedure 0.657 0.965 1.000

Note: This table presents p-values of RD treatment effects of the Australian Baby Bonus on hospital
presentations of infants, under three alternative inference methods. Our main specification uses
local polynomial estimation and robust bias-corrected inference methods, with CER-optimal
bandwidths and clustering standard errors at the level of birth dates. Column (1) indicates p-
values obtained from our main estimation method. Column (2) presents Romano-Wolf p-values
corrected for familywise error rate (see Romano and Wolf, 2005a, 2016; Clarke, Romano and
Wolf, 2020). Column (3) presents Holm corrected p-values (Holm, 1979). We exclude children
born overseas, and all births within seven days of July 1, 2004. p-values in bold indicate effects
that are statistically significant at least at the 5% level; p-values in italics indicate effects that are
statistically significant at the 10% level.
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Table B.15: The Effects of the Australian Baby Bonus on Hospital Presentations by
Socioeconomic Status

Sample split: Father’s occupation:

High skilled Low skilled
Coef. Est. Sd.err. Coef. Est. Sd.err.

(1) (2) (3) (4)

Health Care Utilization Index [std.] −0.049 0.050 −0.124∗∗∗ 0.042

Health Care Utilization by Subitem

Panel A. Presentations by hospital service:
Any hospital service 0.031 0.038 −0.054∗ 0.028
Emergency department 0.020 0.041 −0.042∗ 0.025
Inpatient service −0.011 0.024 −0.063∗∗ 0.024

Panel B. Presentations for urgent, acute or severe problems (by hospital service):
Emergency department:
Urgent, acute or severe problem −0.028 0.029 −0.020 0.022
Admission to ward −0.023 0.021 −0.051∗∗∗ 0.018

Inpatient services:
Urgent, acute or severe problem −0.025 0.020 −0.054∗∗∗ 0.018
Admission to ward 0.003 0.008 0.003 0.009
Overnight admission 0.016 0.026 −0.037∗ 0.021

Panel C. Potentially preventable pediatric presentations:
Any PPP presentation 0.009 0.033 −0.049∗ 0.027
Any PPP presentation, ED 0.008 0.033 −0.048∗∗ 0.023
Any PPP presentation, IS −0.024 0.016 −0.028∗∗ 0.012

Additional Items (not in Health Care Utilization Index)

Panel D. Any planned visits or presentations with medical referral:
Emergency department:
Planned visit 0.003 0.010 −0.010 0.007
Visit with med. referral 0.008 0.015 −0.001 0.013

Inpatient services:
Planned visit 0.007 0.008 −0.005 0.007
Visit with med. referral −0.009 0.014 −0.012 0.015
Booked elective procedure 0.003 0.011 0.004 0.012

Note: This table presents RD treatment effects of the Baby Bonus on hospital presentations across
SES at birth. Each line corresponds to a separate regression using our main specification. We
use local polynomial estimation with robust bias-corrected inference methods, and CER-optimal
bandwidths with standard errors clustered at the level of birth dates. We exclude 38 children born
overseas in 2004 and all births within seven days of July 1, 2004. *, **, and *** denote effects
significant at the 10%, 5% and 1% respectively.
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Table B.16: The Effects of the Australian Baby Bonus on Pretreatment
Characteristics and Birth Outcomes by Socioeconomic Status

Sample split: Father’s occupation:

High skilled Low skilled
Coef. Est. Sd.err. Coef. Est. Sd.err.

(1) (2) (3) (4)

Child and Parental Predetermined Characteristics:
Child is female 0.004 0.023 0.02 0.013
Private hospital −0.017 0.02 0.017 0.015
No. antenatal visits −0.169∗ 0.098 0.034 0.099
Mother smokes −0.019 0.012 0.008 0.012
Mother’s age:
35+ −0.035∗ 0.018 0.012 0.009
40+ −0.007 0.008 −0.007 0.005

Mother’s marital status:
Never Married 0.003 0.007 0.021∗∗∗ 0.008
Married −0.001 0.008 −0.018∗∗ 0.008
Single −0.001 0.003 −0.005 0.003

Mother’s race:
Caucasian −0.011 0.01 −0.003 0.008
Asian 0.010 0.008 0.002 0.006
Aboriginal or TSI 0.002 0.006 0.001 0.004

Child birth outcomes:
Baby weight 18.693 20.532 57.507∗∗ 22.749
Special Nursery −0.007 0.016 0.007 0.013
NICU −0.004 0.008 0.003 0.005
PICU 0.002 0.002 0.000 0.001
Neonatal death 0.001 0.002 −0.001 0.002
Apgar 1 min > 7 0.000 0.015 −0.006 0.015
Apgar 5 min > 7 0.000 0.007 −0.004 0.006
Gestational age 0.063 0.083 0.143 0.096
Preterm birth −0.009 0.012 −0.009 0.011
Obstetric complication −0.004 0.019 −0.022 0.018
C-section 0.010 0.019 0.004 0.015
Note: This table presents RD treatment effects of the Baby Bonus on pretreatment
characteristics of children and their parents based on birth and perinatal records
across SES at birth. Each line corresponds to a separate regression using our
main specification. We use local polynomial estimation with robust bias-corrected
inference methods, and CER-optimal bandwidths with standard errors clustered at
the level of birth dates. We exclude 38 children born overseas and all births within
seven days of July 1, 2004. *, **, and *** denote effects significance at the 10%, 5%
and 1% respectively.
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Appendix C Supplementary Evidence from the HILDA House-

hold Survey

Figure C.1: Daily Number of Births to HILDA Households in Australia within 90 Days of July 1, 2004
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Note: This figure shows the number of daily births to HILDA respondents in Australia
between March 1, 2004, and November 1, 2004 (90 days within July 1, 2004). The red
vertical line indicates the threshold date, July 1, 2004 (Thursday). The gray area represents
births within seven days of the threshold, which are excluded from our estimation sample.
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Table C.1: HILDA - Results of Local Polynomial Density Test

Est. Bandwidth N. Unique Babies Density Test

Estimation Method Left Right Left Right p-val.
(1) (2) (3) (4) (5) (6)

Excluding 7-day donut:
Restricted, linear 1,236 1,236 670 156 0.472
Unrestricted, linear 167 167 67 52 0.317

Including all births:
Restricted, linear 1,038 1,038 516 156 0.508
Unrestricted, linear 146 146 55 48 0.199

Note: This table presents the results of nonparametric density tests of the running variable around July 1,
2004 using HILDA data. We conduct Cattaneo, Jansson and Ma (2020)’s test using the Stata command
rddensity (Cattaneo, Jansson and Ma, 2018). Column (1) indicates the local polynomial fit method
and the bandwidth estimation method. Columns (2) and (3) indicate the estimated bandwidth on either
side of the threshold (if applicable), and columns (4) and (5) indicate the number of observations used
in the test on either side of the threshold. Column (6) presents the p-value of each density test comparing
the distribution of births on each side of the threshold to a Gaussian approximation. Large p-values
indicate that the distribution of births on either side of the threshold are not statistically different from
one another. The sample used is HILDA respondents with children born in Australia between July 1,
2003, and July 1, 2005, excluding all children born within seven days of July 1, 2004.

Table C.2: Balancing Tests on Predetermined Characteristics (HILDA)

Coef. Sd.err. p-value Pre-threshold
Est. Mean

Respondent age at interview (in days) −606.099 1137.713 0.594 12128.156
Respondent sex −0.065 0.318 0.839 0.528
# children aged 0-4 in the household −0.378 0.308 0.221 1.459
# children aged 5-9 in the household −0.214 0.366 0.559 0.307
# children aged 10-14 in the household 0.074 0.179 0.681 0.104
# children aged 15-24 in the household −0.068 0.046 0.137 0.026
Baby age at interview (in days) 66.21 21.363 0.002 326.234
Note: This table presents the results of balancing tests on pretreatment characteristics of children
and their parents using data from the Household, Income, and Labor Dynamics in Australia (HILDA)
survey. Each line corresponds to a separate regression using our main specification. We use local
polynomial estimation and robust bias-corrected inference methods with bandwidths of 120 days
around the threshold. We cluster standard errors at the level of respondents. We exclude all children
born within seven days of July 1, 2004. The sample contains 82 unique babies and 149 parents.
p-values in italics indicate effects statistically significant at least at the 10% level.
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Table C.3: The Effects of the Australian Baby Bonus on Parental Behaviors (HILDA)

Coef. Sd.err. p-value Pre-threshold
Est. Mean

Current Weekly Household Expenditures (in $)
All groceries 23.440 35.514 0.509 167.468
Food 25.930 34.124 0.447 123.316
Meals/Take-out −33.670 25.027 0.179 49.710

Financial Stress Since January
Able to raise emergency $2,000 0.243 0.152 0.108 0.826
Went without meals −0.065 0.087 0.454 0.032
Unable to heat home 0.011 0.052 0.837 0.014
Could not pay elec./gas/telephone bills −0.262 0.180 0.146 0.248
Could not pay the mortgage or rent on time −0.166 0.128 0.196 0.171
Had to pawn or sell something −0.129 0.128 0.315 0.115
Asked for financial help from friends/family −0.018 0.197 0.926 0.248
Asked for help −0.075 0.104 0.473 0.046

from welfare/community organizations

Marital stability 0.193 0.093 0.038 0.952

Parental Self-Assessed Health Status
Physical functioning 11.119 8.072 0.168 90.617
Bodily pain 5.944 10.515 0.572 80.014
Ability to perform job −4.260 12.279 0.729 88.079
General health 7.231 10.258 0.481 74.807
Vitality −1.868 11.390 0.870 57.867
Emotional health 14.345 11.852 0.226 88.479
Social functioning 10.752 10.170 0.290 86.124
Mental health 5.691 8.861 0.521 75.702

Maternal Labor Supply
Hours would like to work 8.662 8.663 0.317 35.698

Child Care Use
Intended use∗ 0.192 0.243 0.431 1.455
Total weekly hours of child care

All school-aged children, during term −22.795 7.002 0.001 7.167
All school-aged children, during holidays 16.441 26.778 0.539 24.714
All not-yet-at-school children 10.812 9.938 0.277 23.010

Note: This table presents our findings on the effects of the Australia Baby Bonus on parental behaviors
based on data from the Household, Income, and Labor Dynamics in Australia (HILDA) survey. Each line
corresponds to a separate regression using our main specification. We use local polynomial estimation
and robust bias-corrected inference methods with a 120-day bandwidth around the threshold and cluster
standard errors at the level of respondents. We exclude all children born within seven days of July 1, 2004.
Each line is based on a sample of 82 unique babies born to 149 parents within 120 days of July 1, 2004,
who are HILDA respondents. p-values in italics indicate effects statistically significant at least at the 10%
level. Intended Use * : "In last 12 months, have you used/thought about using child care so you can work?".
Self-assessed health status are summative scales transformed into 0–100 scale by the HILDA team.
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Table C.4: The Effects of the Australian Baby Bonus on Parental Behaviors (HILDA)

Coef. Sd.err. p-value Pre-threshold
Est. Mean

Current Weekly Household Expenditures (in $)
All groceries 74.17 43.70 0.090 173.76
Food 98.24 40.48 0.015 126.78
Meals/Take-out −35.41 32.59 0.277 52.23

Financial Stress Since January
Able to raise an emergency $2,000 0.391 0.178 0.028 0.84
Went without meals −0.153 0.078 0.050 0.036
Unable to heat home −0.104 0.057 0.067 0.012
Could not pay elec./gas/telephone bills −0.396 0.205 0.053 0.213
Could not pay mortgage/rent on time −0.146 0.145 0.315 0.132
Had to pawn or sell something −0.160 0.140 0.254 0.124
Asked for financial help from family/friends −0.165 0.220 0.454 0.201
Asked for financial help −0.276 0.113 0.015 0.024

from welfare/community organizations

Marital stability 0.238 0.112 0.033 0.954

Parental Self-Assessed Health Status
Physical functioning 19.842 9.048 0.028 91.095
Bodily pain 21.157 12.432 0.089 80.607
Ability to perform job 17.855 14.273 0.211 86.976
General health 14.551 13.449 0.279 76.272
Vitality 1.155 14.606 0.937 58.314
Emotional health 26.643 13.930 0.056 87.698
Social functioning 20.436 11.725 0.081 85.799
Mental health 15.622 10.772 0.147 75.751

Maternal Labor Supply
Hours would like to work 1.102 11.463 0.923 36.285

Child Care Use
Intended use∗ −0.121 0.300 0.686 1.460
Total weekly hours of child care

All school-aged children, during term −8.143 6.529 0.212 5.000
All school-aged children, during holidays 110.835 25.669 0.000 24.200
All not-yet-at-school children 17.96 11.778 0.127 21.616

Note: This table presents our findings on the effects of the Australia Baby Bonus on parental behaviors
based on data from the Household, Income, and Labor Dynamics in Australia (HILDA) survey. Each line
corresponds to a separate regression using our main specification. We use local polynomial estimation
and robust bias-corrected inference methods with a 90-day bandwidth around the threshold and cluster
standard errors at the level of respondents. We exclude all children born within seven days of July 1, 2004.
Each line is based on a sample of 58 babies born within 90 days of July 1, 2004, born to 106 parents who
are HILDA respondents. p-values in italics indicate effects statistically significant at least at the 10% level.
Intended Use * : "In last 12 months, have you used/thought about using child care so you can work?".
Self-assessed health status are summative scales transformed into 0–100 scale by the HILDA team.
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