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Abstract 

Studying with higher ability peers increases student performance, yet we have little idea why. 

We exploit random assignment of students to classrooms and find positive peer effects on test 

scores. With very rich data on seventeen potential mechanisms, we then estimate how peer 

effects on attitudes, parents, etc. could drive these results. Higher-achieving peers reduce 

student effort, increase student university aspirations, increase parental time investments, and 

have precise null effects elsewhere. None of these mechanisms, however, explain our peer 

effect on test scores. Our findings question the prevailing empirical approach to understanding 

the mechanisms underlying academic peer effects.

JEL classification: I23, I26, D13

Keywords: Random assignment; standardized test; mediation analysis; parental investment; 

school inputs
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1 Introduction  

Despite an immense literature in economics documenting the importance of peers for academic 

achievement, we still know little about their mechanisms. This remains an important limitation in 

our understanding of the theoretical underpinnings of peer effects, and limit our scope for using 

class assignment policies as a tool to improve student achievement and educational outcomes 

(Carrell, Sacerdote & West, 2013; Sacerdote, 2014; Ushchev & Zenou, 2020).  

One key reason why it is difficult to make headway in understanding the mechanisms behind peer 

effects is that this requires large amounts of data from several sources. The prevailing view is that 

educational achievement is the output of an education production function which comprises 

several simultaneous inputs from students, parents and teachers (e.g. Cunha & Heckman 2007). If 

so, it is also natural to think that peers can affect educational achievement through any of these 

inputs. Yet datasets that collect information on all, or even many, of these inputs are rare. Because 

of this limitation, the prevailing approach in the empirical literature on academic peer effects is to 

focus on the effect of higher-achieving peers on the few available outcomes and discuss why these 

isolated responses may be mechanisms through which academic peer effects operate. Formal 

analyses of the share of peer effects we can explain are often futile with so few mechanisms to 

look at, leaving the key unanswered question: what drives academic peer effects? 

To answer this question, we need three key elements in the same environment. First, we need to 

establish their existence; that there is a causal effect of being exposed to higher-achieving peers 

on students’ own academic achievement. Second, we need to observe many candidate mechanisms 

that affect academic achievement. And third, we need to determine whether better peers improve 

academic achievement by shifting those factors. Many studies have gained access to one or two of 

these key elements, yet to date there is no study that provides empirical evidence all three of them 

jointly. We fill this gap. 

In this paper, we first show the existence of academic peer effects, as others have done in different 

settings (for excellent reviews, see Sacerdote, 2011; 2014). We exploit a mandate to randomly 

assign student to classrooms within schools in our setting as a cornerstone in our identification 

strategy, and develop a method to identify and use only schools that adhere to this mandate in our 

analyses. We find that a one standard deviation (1 SD) increase in the average test scores of 
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classroom peers at baseline increases own test scores by 5.4 percent of a standard deviation two 

years later. 

Using rich data on students, parents, teachers and schools, we then estimate the causal effect of 

higher-achieving peers on a large battery of student, parent, and teacher educational inputs, which 

are all potential mechanisms of academic peer effects. Having 1 SD higher-achieving academic 

peers decreases students’ school effort, increases students’ university aspirations, and increases 

their expected ability to go to university. Higher-achieving peers also increase parents’ time 

investments. We do not find effects of higher-achieving peers on students’ initiative in class, 

truancy, exam cheating, or academic self-efficacy. We also find no effects on parental investments 

in private tutoring, on strictness, emotional support or harsh parenting, or on parental aspirations 

for their child to go to university. Finally, we also find no effects on students’ perceptions of their 

school environment or their teacher engagement. Some of the effect we do find complement 

existing evidence in the peer effect literature (Feld & Zölitz, 2017 on perceived quality of peer 

interactions; Bursztyn & Jensen, 2015 and Bursztyn, Egorov & Jensen, 2018 on social pressure 

and effort provision; Carrell, Hoekstra & Kuka, 2018 on long-run college enrolment). Yet most of 

our estimates explore unstudied mechanisms behind academic peer effects; in fact, no study before 

has been able to test as many candidate mechanisms as we do. 

Combining our estimates of higher-achieving peers on score and on educational inputs, we then 

answer the question: How much of the academic peer effect can be explained by our measured 

mechanisms? To do this, we begin by estimating the returns of all our educational inputs on 

academic achievement using high-quality cumulative value-added models (Todd & Wolpin, 2007; 

Fiorini & Keane, 2014). Our estimates show large returns to many of our explored inputs. We then 

use these returns to map the effects of higher-achieving peers on educational inputs to academic 

achievement using mediation analyses (Gelbach, 2016). Our estimates show that our battery of 

educational inputs mediate a negative share of our academic peer effects—which means that the 

effects of higher-achieving peers on educational inputs make it harder, not easier, to explain 

academic peer effects. This negative mediation is largely driven by the combine negative effect of 

higher-achieving peers on student effort and its positive value-added returns. Our other inputs 

explored have a virtually null contribution to mediation. This is a surprising and important new 
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result that questions the prevailing empirical approach to understanding the mechanisms behind 

peer effects. 

Finally, we perform an extensive set of sensitivity analyses for our results including: additional 

tests for conditional random assignment, alternative estimates with an exhaustive set of controls, 

calculations of the degree of correlated unobserved heterogeneity needed to explain away our 

findings, corrections for measurement error in student ability and for incomplete sampling of 

classrooms, inference corrections using randomization inference and multiple hypotheses testing 

adjustments, and an extensive exploration of heterogeneity in peer effects and their mediation. 

Our paper makes several contributions to better understand the complex nature of academic peer 

effects. This is the first paper to provide a thorough test of the many possible mechanisms 

underlying academic peer effects, testing 17 of them covering all key agents in educational 

production. Most previous studies test some potential mechanisms for academic peer effects but 

never many at a time, and never in a formal mediation analysis (two other studies such as Gong, 

Lu & Song, 2019 and Zölitz & Feld, forthcoming, use this approach for exploring mechanisms 

behind peer gender effects). This is an important limitation since the many inputs in the education 

production function imply equally many mechanisms for peer effects to work through, and the 

only way to know how well we can explain peer effects is to jointly test all these potential 

mechanisms (see e.g. Bursztyn & Jensen, 2015). The fact that after our efforts we still do not know 

how academic peer effects work is a testament to their complexity. Our findings should spur future 

research to come up with new hypothesized and untested mechanisms, or alternative methods for 

exploring the currently-observed ones. 

We also make two methodological contributions to the empirical literature on peer effects. First, 

we develop a well-defined algorithmic approach to conducting balancing tests and identifying non-

compliers in quasi-experimental peer effect designs. This is particularly useful in settings with 

likely partial compliance to random assignment of students to classrooms and no fully reliable 

indicators of non-compliance. In such settings, researchers often try and account for systematic 

violations of random assignment by controlling for additional characteristics beyond balancing 

characteristics, which complicates the interpretation of peer effect estimates and weakens 

identification strategies. Our approach is a transparent alternative to improve the validity of quasi-
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experimental research designs based on conditional random assignment without relying on 

conditioning pre-treatment covariates to account for failed randomization. Second, we provide a 

simple algorithm for randomization inference that observes the data structure of students within 

schools and within classrooms. Maintaining the data structure and, in particular, rigorously 

respecting assigned classroom sizes is crucial for correctly calculating permutation-based t-

randomization p-values (Young, 2019) and for producing permutation-based tests of random 

assignment, which are commonly used in the empirical peer effects literature. We provide Stata 

code for these two procedures upon request. 

2 Peer effects in education 

Economists have been interested in peer effects for a long time, and have published over 100 

articles in economic journals since 2009 on peer effects in education alone, 28 of them in Top Five 

journals.1 One reason for the widespread interest in peer effects is that they could “be harnessed to 

cost-effectively improve public […] services” (BenYishay & Mobarak, 2018). In other words, the 

existence of peer effects implies a social multiplier effect. Inspired by this promise of peer effects, 

an immense empirical literature rose to provide evidence on their existence and size—notable in 

education but in other fields as well. After two decades of studies, the existence of peer effects in 

education is a well-established fact. 

Peer effects are notoriously difficult to identify for two main reasons (Manski, 1993): self-selection 

into peer groups (i.e., that similar people sort into the same groups) and the reflection problem 

(i.e., that estimates capture both my effect on my peers and the effect of my peers on me). Self-

selection introduces bias in peer effects estimates arising from omitted variables. Reflection ties 

together the effects of (endogenous) peer interactions with the effect of (exogenous) peer 

characteristics, complicating the interpretation of peer effect estimates.  

                                                 

1 For brevity, we focus on studies of peer effects on academic achievement, but many other studies also document 

peer effects in e.g. college dropout (Stinebrickner and Stinebrickner, 2001), cheating in school (Carrell, Malmstrom, 

and West, 2008), job search (Marmaros, and Sacerdote, 2002), substance abuse (Argys and Rees, 2008; Kremer and 

Levy, 2008; Card and Giuliano, 2013), crime (Deming, 2011), technology adoption (Oster and Thornton, 2012), 

consumption (Moretti, 2011), financial decisions (Ahern, Duchin and Shumway, 2014; Bursztyn, Ederer, Ferman, 

Yuchtman, 2014) and beliefs (Boisjoly, Duncan, Kremer, Levy and Eccles, 2006). 
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Empirical studies typically solve the reflection problem by estimating the reduced-form effect of 

pre-assignment peer characteristics on student outcomes. Many studies have in addition 

convincingly solved the issue of self-selection by exploiting quasi-experimental assignment of 

students to peer groups. Two types of identification strategies have mainly been used to that end. 

The first strategy leverages (conditional) random assignment to peer groups within an institution. 

Examples include roommate assignment in college (Sacerdote, 2001; Stinebrickner & 

Stinebrickner 2001, 2006; Zimmerman, 2003; Foster, 2006; Brunello, De Paola & Scoppa, 2010; 

Griffith & Rask 2014; Jain & Kapoor, 2015; Garlick, 2018), classroom/section/dorm assignment 

within institutions (e.g., Lyle, 2007; Kang, 2007; Graham, 2008; Carrell, Fullerton and West, 2009; 

De Paola and Scoppa, 2010; Burke & Sass, 2013; Carrell, Sacerdote & West, 2013; Brady, Insler, 

& Rahmam, 2017; Feng & Li, 2016; Feld & Zölitz, 2017; Huntington-Klein & Rose, 2018; 

Garlick, 2018), and study group assignment within classroom (Lu & Anderson, 2014, Hong & 

Lee, 2017). The second identification strategy uses natural variation in cohort composition. 

Examples include cross-cohort variation within an institution (Hoxby, 2000, Figlio, 2007); natural 

shocks or policy-driven changes affecting peer group composition (Angrist & Lang, 2004; Gould, 

Lavy & Paserman, 2004; Imberman, Kugler & Sacerdote, 2012; Figlio & Ozek, 2019); admission 

cutoffs for schools or classrooms (Pop-Eleches & Urquiola, 2013); and experimental assignment 

to peer groups: see e.g. Whitmore, 2005; Duflo, Dupas & Kremer, 2011).2  

The main findings of this literature are that i) academic peer effects are positive but generally 

small; ii) the size of academic peer effects depends non-linearly on students’ own academic ability; 

and iii) academic peer effects vary in large and seemingly unpredictable ways across settings. 

Recent empirical studies have argued that academic peer effects could be largely driven by three 

types of mechanisms: i) student effort (e.g., Kang, 2007; Brunello, De Paola & Scoppa, 2010), ii) 

group dynamics (e.g. Lavy & Schlosser, 2011; Lavy, Paserman & Schlosser, 2011; Bursztyn & 

                                                 

2 It should be clear by now that there are very many studies of peer effects in education—see Sacerdote (2011, 2014) 

for two excellent reviews. For studies using cross-cohort variation within an institution see also: Hanushek, Kain, 

Markman and Rivkin 2003; McEwan, 2003; Arcidiacono and Nicholson, 2005, Hanushek, Kain, and Rivkin 2009; 

Lavy and Schlosser, 2011; Lavy, Paserman and Schlosser, 2011; Lavy, Silva and Weinhardt, 2012; Kiss, 2013; Diette 

and Uwaifo Oyelere, 2014; Kramarz, Machin and Ouazad, 2015; Gibbons and Telhaj, 2016. For studies using natural- 

or policy-driven shocks see also: Hoekstra, 2009; Clark, 2010; Vardardottir, 2013; Jackson, 2013; Abdulkadiroğlu, 

Angrist and Pathak, 2014; Dobbie and Fryer, 2014; Hoekstra, Mouganie, Wang, 2018. 
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Jensen, 2015; Brady, Insler & Rahmam, 2017; Feld & Zölitz, 2017), and iii) teacher effort or 

school resources (e.g., Duflo, Dupas & Kremer, 2011; Chetty et al. 2011; Hoekstra, Mouganie & 

Wang, 2018, Todd & Wolpin, 2018).  

A separate literature, yet directly relevant for our study, emphasizes the importance of parents as 

drivers of their children’s academic achievement. This literature models academic achievement 

through an education production function framework—that is, as an output produced from 

students’, parents’ and teachers’ inputs and governed by well-defined production technologies 

(such as dynamic or technical complementarities). Recent studies in this literature show, for 

example, that the benefits of class size reductions are driven by changes in student effort and 

classroom disruption (Lazear, 2001; Finn, Pannozzo & Achilles, 2003), as well as by changes in 

teacher behavior (Sapelli & Illanes, 2016) and parental investments (Bonesronning, 2004, Jacob 

and Lefgren, 2007; Datar & Mason, 2008; Fredriksson, Oeckert, & Oosterbeek, 2016). Recent 

studies estimate structural models of education production functions that include school peers, 

parents and neighborhoods as inputs (e.g. Agostinelli, 2018, Agostinelli, Doepke, Sorrenti & 

Zilibotti, 2020). 

In this paper, we estimate the contribution of higher-achieving academic peers to students’ test 

scores and to many educational inputs that may also contribute to improving test scores in their 

own right. Conceptually, our reduced-form models map the contribution of higher-achieving peers 

in a linearized version of education production functions. The downside of this approach is that 

we do not use economic structural information to improve identification. The upside is that our 

models are transparent in their identifying variation, econometrically tractable, and can easily be 

used to quantify the share of academic peer effects explained by educational inputs via standard 

mediation analyses. To take full benefit of this approach we exploit the pairing of Taiwan’s policy 

of random classroom assignment within schools and the rich data in the Taiwan Educational Panel 

Survey, which we describe in detail in Section 3.  
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3 Institutional setting & Data 

3.1 Education in Taiwan 

Figure 1 shows the basic organization of the Taiwanese educational system. Compulsory education 

in Taiwan starts at primary school, at 6 years old, and ends at the end of junior high school (middle 

school), around 15 years of age. In practice, however, 95 percent of students continue further onto 

either General or Vocational Senior High School or Junior College. 

Since the democratization process in Taiwan started in the 1990s, junior high schools have been 

managed at the municipal level. Students can attend any school they chose but there is preferential 

school access based on catchment areas within each municipality. The educational curriculum is 

developed centrally by the Taiwanese Ministry of Education and has no subject specialization until 

only after junior high school. This unified curriculum is centered around sciences and mathematics 

Figure 1. The education system in Taiwan 
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and its adoption is often cited as the reason why Taiwanese pupils are consistently placed at the 

top on international educational rankings (e.g. 4th out of 72 countries in PISA 2015; Law, 2005). 

Critical for our identification strategy, since the 1990s municipalities are also mandated by the 

government to ensure the random assignment of students to classrooms within schools. This 

requirement was formalized by the Implementation Guideline for Class Assignment of Junior High 

School Students, later superseded by Article 12 of the Primary and Junior High School Act in 

2004.3 Classroom assignment plays a persistent role in students’ education since students typically 

remain with their assigned class and homeroom teacher (or ‘Dao Shi’) throughout all three years 

of junior high school (Chang et al. 2020). 

The Taiwanese education system is an extremely high pressure, exam-based, learning 

environment. There is a National Basic Competence Test at the end of junior high school and its 

results play a key role for admissions to senior high schools and senior vocational schools. A good 

placement in these competitive schools, in turn, results in good placements in tertiary education 

programs, which have high returns in the labor market afterwards. Consequently, students spend 

substantial time and effort preparing for these exams, and schools regularly organize practice 

exams and other forms of preparation. Parents are also heavily involved in their children’s 

preparation, investing in extracurricular tutoring in mathematics, English and sciences largely 

through “cram schools”—private extra-curricular institutions preparing for higher education 

entrance examinations—throughout junior high school or even earlier. 

3.2 The Taiwan Education Panel Survey (TEPS) 

We use data from the Taiwanese Education Panel Survey, a project jointly funded by the Ministry 

of Education, the National Science Council, and the Academia Sinica. The TEPS is a nationally 

representative longitudinal survey of the education system in junior high school, senior high 

school, vocational senior high school, and junior college.  

                                                 

3 Additional details can be found at: http://edu.law.moe.gov.tw/EngLawContent.aspx?id=142. 

http://edu.law.moe.gov.tw/EngLawContent.aspx?id=142
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We use the junior high school sample of the TEPS. This sample includes information on more than 

20,000 students, their parents, their teachers and their school administrators over two waves. The 

first wave was collected in early September 2001 at be beginning of students’ first year of junior 

high school, right after their assignment to classrooms. The second wave was collected in 2003, at 

the beginning of the students’ last year of junior high school. 

Paired with the mandate of random assignment to classrooms in schools, there are three other key 

features of TEPS that aid our study. First, its sampling framework allows us to observe a random 

sample of classmates in each junior high school classroom included in the survey. TEPS follows 

a stratified nested sampling procedure where first 338 randomly selected junior high schools were 

sampled (45 percent of all high schools in the country at the time), with different sampling strata 

for urban and rural areas, public and private schools, and senior high and vocational schools. In 

each of these schools an average of three classrooms of first-year students were then randomly 

sampled. In each of these classrooms, around 15 students were then randomly sampled. The 

mandated maximum class size at the time was 35 students per class, which implies that observed 

students in any classroom generally represent a random half of the classroom.4 This sampling 

framework is similar to that of the National Longitudinal Study of Adolescent to Adult Health 

(Add Health), a panel study of a nationally representative sample of middle and high school pupils 

in the United States. Add Health is unique in collecting friendship ties and in observing multiple 

cohorts of students in each school, which makes it particularly appealing for peer effect and 

network research (e.g. Agostinelli, 2018; Elsner & Isphording, 2017; Card & Giuliano, 2013; 

Bifulco, Fletcher & Ross, 2011; Calvo-Armengol, Patacchini & Zenou, 2009).  

Second, and unlike Add Health, students in the TEPS take a standardized test in waves 1 and 2 

called the Comprehensive Analytical Ability test. This test measures of students’ cognitive ability 

and analytical reasoning, and it was specifically designed to capture gradual learning over time. 

There are 75 multiple-choice question in the test, covering general reasoning, mathematics, 

Chinese and English. These questions were taken from an extensive question bank which includes 

                                                 

4 There are other minor sampling restrictions that are irrelevant for our empirical design, we refer the interested reader 

to TEPS technical reports.  
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adapted questions from other international standardized tests, as well as questions provided by 

education and field experts in Taiwan. The Comprehensive Analytical Ability test scores, 

constructed as the sum of all correct answers, provide excellent measures of academic ability for 

students and their peers.  

Third, TEPS has a wealth of questions measuring student behavior, attitudes and beliefs in and 

outside the school environment, parent-child interactions and parental investments. TEPS also has 

detailed information on teachers and school administrators. We aggregate these questions to 

construct a truly extensive battery of measures of student, teacher and parent inputs in students’ 

educational production function. These input measures allow us to extensively explore potential 

mechanisms behind academic peer effects. 

To measure student, teacher and parent educational inputs in both waves, we use summative 

scales—sums of the answers to each question included in the scale—constructed and validated 

using exploratory and confirmatory factor analyses (see Appendix A for a detailed explanation and 

Appendix Table A.1 for summary statistics and factor loadings on all scale questions). We measure 

student inputs through five scales of student school effort, initiative in class, mental health, 

truancy, and academic self-efficacy, and three additional dummies for whether students cheat in 

exams, aspire to go to university, and expect to be able to go to university. We measure parental 

inputs though four scales of money investments, time investments, parental strictness and parental 

support, and three additional dummies for whether parents have conflicts with their child, use harsh 

punishment, and aspire for their child to go to university. Lastly, we measure school and teacher 

inputs though two scales of perceived quality of the school environment and of teacher engagement 

based on questions asked to students. Table 1 shows a high-level summary of the key academic 

ability and of the educational input measures we construct using the TEPS data, the number of 

items we can use for each measure, and the number of values each measure takes. 

We use many specific pre-assignment characteristics in the TEPS data to provide evidence of 

random assignment of students to classrooms within schools using state-of-the-art tests in the 

empirical peer effects literature, which we discuss below. After excluding a few students without 

test scores in wave 1, our initial TEPS data includes 19,957 in 333 schools, assigned to 12,071 

distinct classrooms. 
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3.3 Testing for random assignment in the empirical peer effects literature 

A growing number of peer effects studies have relied on experimental or quasi-experimental data 

in which students are randomly assigned to peer groups. This literature typically uses three types 

of test to show that data is consistent with (conditional) random assignment of students to groups. 

In the first method, researchers regress student 𝑖’s pre-determined characteristics on the classroom 

leave-out mean—that is, the classroom mean after excluding student 𝑖—of the key regressor of 

Table 1. Description of academic achievement and educational input measures 

Measure Description 
Wave 1 Wave 2 

Items \ Values Items \ Values 

Students 

Test scores 
Comprehensive Analytical Ability standardized test, 

measure of cognitive ability 
75/66 75/59 

School effort 
Study effort; Homework on time (in English, Chinese and 

math class) 
7 \ 23 7 \ 25 

Initiative in class 
Initiative to ask and answer questions (in English, Chinese 

and math class) 
3 \ 12 3 \ 12 

Cheating in exams Student ever cheats in exams 1 \ 2 1 \ 2 

Mental health 
Feeling troubled, depressed, suicidal, nervous, unfocused, 

pressured, irritated, isolated, guilty 
6 \ 19 12 \ 22 

Truancy 
Skipping class, fighting, watching porn, drinking alcohol, 

stealing, running away from home 
6 \ 19 4 \ 10 

Academic self-efficacy 
Focus, diligence, conscientiousness, initiative, eloquence, 

organization, cooperation, curiosity 
7 \ 22 10 \ 19 

University aspirations Student wants to go to university 1 \ 2 1 \ 2 

University 

expectations Student expects to be able to go to university 
1 \ 2 1 \ 2 

Parents 

Money investments Out-of-school tutoring for student: cost and intensity 2 \ 10 3 \ 10 

Time investments 
Frequency of going to bookstores and cultural events 

together with student 
2 \ 7 2 \ 11 

Parent-child conflict Student quarrels with father and mother 1 \ 2 1 \ 2 

Parental strictness Father and mother’s strict discipline with student 2 \ 7 2 \ 17 

Parental support 
Father and mother discuss future, listen carefully, worry 

and give advice, accept student unconditionally 
8 \ 25 8 \ 7 

Harsh parenting Parents use harsh punishment with student 1 \ 2 1 \ 2 

University aspirations Parents want student to go to university 1 \ 2 1 \ 2 

Schools & Teachers 

School environment  
Student perception of school study ethos, campus safety, 

school fairness, engagement of school administrators 
5 \ 16 5 \ 16 

Teacher engagement 

Student perception of whether teacher knows names of 

students, encourages students who work hard, uses several 

different teaching materials, gives homework, cares about 

students, reviews questions after exams 

6 \ 19 6 \ 36 
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interest. This is usually a classroom leave-out mean of ability, gender or other pre-determined 

student behavior (see e.g. Carrell, Sacerdote & West, 2013; Eble & Hu, 2019). A significant 

coefficient on the key regressor classroom leave-out mean indicates that students “treated” with 

peers who share a key characteristic differ from other students in the pre-determined characteristics 

tested. Because this test mirrors balancing-of-covariates tests in the experimental literature, we 

refer to them as balancing tests. 

In the second method, researchers regress student 𝑖’s pre-determined characteristics on classroom 

leave-out mean of that same characteristic (e.g., Sacerdote, 2001). A positive coefficient on the 

characteristic classroom leave-out mean indicates that students are sorted into classrooms based 

on the characteristics tested; hence we call these sorting tests. Guryan, Kroft and Notowidgo 

(2009) observe that empirically, even under random assignment, coefficients of sorting tests 

present a small negative bias; they show that this small, mechanical negative correlation between 

own and peer characteristics seems to disappear when controlling for school-level leave-out-mean 

of the characteristic. Jochmans (2020) argues that Guryan, Kroft and Notowidgo’s empirical 

correction results in low power for detecting sorting. He further derives analytical expressions for 

this bias in within-school estimators and proposes a bias-corrected sorting test which solves the 

power issue of previous sorting tests.  

In the third method, researchers run permutation-based sorting tests (e.g., Carrell, Sacerdote and 

West, 2013; Lim and Meer, 2017). These tests go as follows. While keeping the core structure of 

the data (e.g., assignment to schools), researchers simulate what would happen under random 

assignment to treatment (e.g., to classrooms). Based on this new placebo assignment they then 

calculate key placebo statistics of interest—sometimes for sorting tests, sometimes for balancing 

tests, and sometimes for their main results. They repeat this process, say 10,000 times, and each 

time store their key placebo statistics. Finally, they calculate the proportion of times their placebo 

statistic has a more extreme value than their actual key statistic. They then calculate the proportion 

of times the coefficient of the placebo classroom leave-out mean is more extreme than their 

coefficient of the classroom leave-out mean as observed. This proportion of more extreme 

occurrences under placebo is a simulation-driven empirical p-value for a test of random assignment 

and can be judged by typical standards of statistical significance. These empirical p-values could 

be calculated for many statistics of interest, including for sorting and balancing tests but also for 
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such tests at the school or even classroom level. When many of these empirical p-values are 

calculated, researchers can aggregate them into one overarching statistical test using goodness-of-

fit tests for the distribution of p-values, which should be standard uniform under random 

assignment to treatment. 

All three methods above are valid ways to produce evidence of quasi-random assignment, yet all 

methods also have their shortcomings. Neither method naturally corrects for multiple testing when 

researchers use many pre-determined characteristics in their tests. Using multiple hypotheses 

testing corrections (e.g., Benjamini & Hochberg, 1995; Romano & Wolf, 2005) can, in turn, 

severely decrease test power. Another approach is to joint-test the significance of all pre-

determined characteristics in predicting treatment but these joint tests have a tendency to over-

reject, especially when using cluster-robust inference methods (Pei, Pischke & Schwandt, 2018). 

Permutation tests have the additional problem of being relatively complex to program since 

researchers are required to keep most of the data structure identical (e.g., assignment to schools, 

number of classrooms in each school, class size) while still reassigning treatment at random, then 

correctly recalculate all treatment measures, and ensure that treatment variation is correctly 

accounted for in all estimates – which is harder with discrete measures of pre-assignment 

characteristics like gender or race. In addition, goodness-of-fit tests used to aggregate many 

empirical p-values in permutation tests, such as the Kolmogorov-Smirnoff, have known power 

issues. 

Given the volume of peer effect studies out there, it is no surprise that in many of them there is 

evidence of some systematic assignment to peer groups (e.g. Krueger, 1999; Krueger & Whitmore, 

2001; Whitmore, 2005; Dee, 2004; Ammermueller & Pischke, 2009; Balsa, Gandelman & Roldán, 

2018). When tests of random assignment reject the null that students are randomly assignment to 

peer groups, researchers have used three types of econometric strategies.  

A first approach is to adapt the econometric specification and adjust the interpretation of estimates 

accordingly (Krueger 1999, for example, estimates intent-to-treat effects rather than treatment 

effects), or to consider the size of the selection bias when interpreting results (e.g. Dee, 2004). This 

can be appropriate if the evidence on systematic assignment is weak, quantitatively small, and does 
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not hint at further systematic assignment based on unobservable characteristics that affect student 

outcomes. The cost, however, is that estimates might be biased if any of these conditions fail.  

A second approach is to remove treatment clusters where the data are consistent with some form 

of systematic assignment to treatment (e.g. Krueger, 1999; Whitmore, 2005; Chetty et al., 2011). 

This approach is valid if there are clear reasons to believe that random assignment applies to some 

known treatment clusters but not others, which usually requires intimate knowledge of the 

institutional background behind the data and the presence of markers of these known clusters. In 

complex institutional settings, removing data clusters suspected of systematic assignment to 

treatment quickly becomes unfeasible: depending on the number of potential clusters with 

systematic assignment, how similar they are to one another, and whether the data contains clear 

markers for these clusters, excluding them from main analyses can be costly in terms of statistical 

power.  

A third approach is to control for pre-assignment characteristics that reveal systematic assignment 

in the preferred specification, thus relying on mean independence of treatment conditional on these 

characteristics (e.g., Lavy, Paserman & Schlosser, 2011; Gong, Lu & Song, 2019). This approach 

is not costly in terms of power and does not require intimate knowledge of the institutional 

background, yet it assumes (often implicitly) that controlling for characteristics related to 

systematic assignment fully accounts for related unobserved characteristics that also determine 

assignment. Economist are often wary of this assumption. This third approach also comes with 

other shortcomings. In particular, it assumes that a single parameter function (e.g., linear) in the 

pre-assignment characteristics is sufficient to account for systematic assignment. This assumption 

is unlikely to hold if there are several such characteristics or several treatment clusters that differ 

in their drivers of systematic assignment. Parametrically relaxing this assumption can quickly 

become costly in terms of power. Perhaps more importantly, controlling for pre-assignment 

characteristics changes the interpretation of the peer effect estimates, often making them less 

immediately available for designing better peer group assignment policies. For example, unbiased 

peer effect estimates that control for parental education can only be used to predict outcomes of 

reassignment policies that hold parental education constant—a difficult exercise unless student 

reassignment to classrooms is done explicitly on parental education, which is unlikely to happen 

in practice. 
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In sum, there are several ways to test for random assignment of students to peer groups and several 

ways to deal with an eventual rejection of random assignment. None of the tests are perfect, nor 

are the solutions. In the next section, we show our main test for random assignment in the TEPS 

and refer the interested reader to Sections 5.1.1 and 5.1.2 for the additional tests we run. The case 

of the TEPS also presents an interesting challenge that combines i) a national mandate of random 

assignment of students to classrooms within schools, ii) incentives for parents and schools to 

violate this mandate if they believe that higher-achieving peers affect student outcomes, and iii) 

unusually rich pre-assignment data to test the outcome of these two clashing institutional features. 

In the next section, we also propose a new data-driven method for finding subsamples where quasi-

random assignment is credible, which is particularly useful in complex institutional settings such 

as ours. 

3.4 Random class assignment in TEPS and balancing on peer ability 

Our identification strategy exploits random assignment of students to classrooms. If random 

assignment holds, we expect our treatment of interest, classroom leave-out-mean of peer ability, 

to be randomly assigned to students. Random assignment to treatment is the main identification 

assumption under which our coefficient estimate yields a causal estimate of the effect of peer 

ability on subsequent outcomes. 

To show that the data are consistent with random assignment to classrooms within schools, we run 

sorting tests in the complete TEPS data on standardized test scores and 17 pre-assignment 

characteristics. We start from the complete sample, to prevent missing values to lead to over-

rejecting sorting tests of random assignment. In this complete data, we find evidence of sorting by 

student ability and by several other student characteristics. We take this as evidence that students 

are not randomly assigned to classrooms across the entire TEPS data (see Appendix Table C.1). 

There are many reasons why, in defiance of the national mandate of random assignment, we could 

find evidence of systematic assignment of students to classrooms. These can range from school 

principals occasionally catering to some parents’ preferences for their child to be assigned to some 

classrooms, to institutionally allowed “talent” classrooms that pool high-ability student together, 

to a more concerning blatant disregard for the national mandate across schools. We develop a data-

driven procedure that helps us determine the reason behind this seeming violation of random 
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assignment in the data, and identify a sample where random assignment likely holds. We describe 

the key features of this procedure below, and refer the interested reader to a more complete 

description in Appendix C. 

 

 

The Fishing Algorithm 

Since the law in Taiwan has an explicit mandate of random assignment of students to classrooms, 

we suspect that rejecting the null of sorting tests is most likely driven by few “defier” schools that 

systematically sort students. Unfortunately, our data does not allow us to infer directly which are 

these schools to exclude them from our analysis.  

We therefore designed a sample trimming method, which draws from randomization inference 

insights and combines clearly pre-defined selection rules and latent-class modeling. Our “Fishing 

Algorithm” is a data-driven approach to identify and exclude the schools that show evidence 

inconsistent with conditional random assignment. Given the goal of this paper, we focus on 

trimming schools that systematically sort students of similar academic ability into classrooms, 

although our method can be easily adapted to trim schools that sort on any observed characteristic 

in the data, and even on multiple characteristics at once. 

The key five steps of our fishing algorithm are the following. First, we construct for each school a 

measure of strength of sorting; how strongly is the school sorting students of similar ability into 

the same classrooms. This measure is akin to a Herfindahl-Hirschman index of ability 

concentration in classrooms within each school, with larger values indicating stronger ability 

sorting in classrooms in the school. We call this measure Hs. Second, for each school we use 

several permutations of randomly assignment students to classrooms within school without 

replacement and construct, for each simulated classroom assignment, its corresponding simulated 

index Hs
random. This procedure recovers the distribution of ability concentration in classrooms for 

each school under the null of random assignment. Third, for each school we compute the share of 

permutations for which the observed index Hs in the data was larger than the simulated index 

Hs
random under the null of random assignment, and call this share Ss. Under perfect compliance 



 
17 

with random assignment, we expect the school distribution of Ss to be uniform over the [0,1] 

interval; if random assignment is more values of Ss close to 1 and therefore a less uniform 

distribution. Fourth, we estimate the latent probability that each school is a “defier” schools (i.e., 

a school that sorts students into classrooms more strongly than chance would allow) using latent 

class modelling—an atheoretical data-driven partitioning method that finds observations (e.g., 

school shares Ss) that are likely to be generated by a the same stochastic process (e.g., ability-

sorted classroom assignment). Using school-level data, we fit a finite mixture model where the 

outcome is Ss, the regressors are constants for each latent class, and we include school-level 

variables that could help identify defier schools (such as the share of parents who report pushing 

to get their children assigned to a better classroom). One or more of the latent classes in this model 
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correspond to schools with improbably high Ss—the likely defier schools—and the model itself 

produces school-level posterior probabilities of each school belonging to this defier class. In the 

fifth and final step, we flag defier schools based on whether their posterior probability of being in 

the defier class is larger than 0.5. As mentioned above, a more complete description of this fishing 

algorithm can be found in Appendix C, and we provide validation of this procedure using simulated 

data in Appendix D. 

Most schools in the TEPS data show evidence consistent with random assignment, whereas some 

schools present obvious evidence of sorting (Appendix Figure C1). As illustrated in Figure 2, our 

fishing algorithm identifies 106 out of the 333 schools in TEPS as defier schools, which we exclude 

out of our estimation sample. This leaves us with a trimmed sample of 13,685 students in this 

Figure 2. Schools identified as defying random assignment using our fishing algorithm 

 

This figure shows the school-level distribution of our measure for whether schools sort students into classrooms more strongly 

than chance would allow, given the school size, number and classroom size and student composition. The probability of being 

a defier school is the posterior probability of being in a latent class classified as defiers by us and calculated based on a finite 

mixture model of school sorting using several school averages of parental characteristics as class predictors. See Appendix C 

for details. 
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schools, allocated to 853 classrooms (68 percent of the TEPS data). Our trimmed sample is very 

similar to the overall TEPS data in terms of all key student and parent characteristics in wave 1, 

and is also similar to our final estimation sample of 11,068 observations with complete information 

on student and peer test scores and educational inputs (Appendix Table C2). 

An important concern in applying our fishing algorithm is over-trimming; that is, to remove 

schools that by chance look like defers but are not. This process will almost always result in some 

schools being over-trimmed. Over-trimmed schools would have contributed useful variation to 

identify peer effects. With severe over-trimming, peer effects could be less precisely estimated at 

best, and biased at worst (upwards if e.g., peer effects are highly non-linearly driven by the positive 

effect of higher-achieving peers on high-achieving students). However, over-trimming is also 

easily diagnosed in our algorithm; it shows as negative and significant post-trimming sorting t-

statistics. If negative post-trimming sorting t-statistics occurs, researchers should make efforts to 

improve the performance of the fishing algorithm (by e.g., finding better predictors of sorter 

schools or exploring different latent lass structures or models). If no improvement can be made, it 

is important to highlight the over-trimming brought on by the algorithm and cautiously interpret 

findings accordingly. Fortunately, in our application of the fishing algorithm to TEPS we find 

virtually no evidence of over-trimming. 

Sorting and balancing tests in our trimmed sample 

Table 2 presents the results of sorting and balancing tests on the trimmed sample, that is, once we 

exclude the schools likely to be non-compliant with the mandate of random assignment.5 Columns 

2 and 3 show sorting tests t-statistics, to be compared to standard normal critical values, whereas 

                                                 

5 For this discussion, it is useful to keep in mind the omitted variable bias formula for our peer effect estimator β:  

E[β|X] − β = γρ 

where γ is the conditional effect of any omitted factor on student outcomes and ρ is proportional to the correlation 

between the omitted factor and our peer achievement leave-out-mean. Evaluating all endogeneity concerns against 

this formula is an enlightening way to map econometric endogeneity concerns to economic principles. 
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columns 3 and 4 show coefficients and standard errors of balancing regressions of pre-assignment 

characteristics on peer ability. 

The main endogeneity concern in our estimates is ability sorting of students; that is, that high-

ability students are assigned together in the same classroom. This type of sorting is concerning 

because, if ability is dynamically self-productive as in e.g., Cunha and Heckman (2007), it would 

bias peer effect estimates upwards. The first row of Table 2 shows that this sorting is not a concern 

in our trimmed sample.  

Another common endogeneity concern is whether students are sorted in productive characteristics 

other than ability, say parental income. This kind of sorting is tested in the second and third 

columns, second row and below, of Table 2. Sorting on parental income can introduce bias in peer 

Table 2. Balancing and Sorting Tests on our Trimmed Sample 

    
Sorting tests 

(t-statistic) 
  Balancing tests 

Treatment:  

 
Peer outcome  

leave-out-mean 

  Peer ability  

leave-out-mean [std] 

 Students 

Guryan et 

al. (2009) 

Jochmans 

(2020)  Coef. Std. err. 

Outcomes: Pre-assignment characteristics             

Student test scores [std] 13,685 -0.2 0.1 
   

 

      

Female student 13,685 2.1 -0.2 
 

0.008 (0.011) 

Student born before 1989 13,611 -0.8 0.6 
 

-0.005 (0.010) 

Household income > NT$100k/mo. 13,454 -0.7 -0.3 
 

-0.019*** (0.007) 

College-educated parent(s) 13,084 -0.8 0.8 
 

0.001 (0.009) 

Parent(s) work in government 13,023 1.4 0.0 
 

0.010 (0.007) 

Ethnic minority parent(s) 13,081 2.2 1.4 
 

-0.004 (0.009) 

Prioritized studies since primary school  13,593 -1.7 0.8 
 

-0.010 (0.009) 

Reviews lessons since primary school 13,583 -0.2 1.7 
 

0.003 (0.008) 

Likes new things since primary school 13,554 1.5 2.4 
 

-0.001 (0.011) 

Was truant in primary school 13,489 1.6 -0.7 
 

0.000 (0.011) 

Student had mental health issues in primary school 13,486 -0.7 0.2 
 

-0.004 (0.010) 

Had private tutoring before junior high 13,525 0.3 1.4 
 

0.004 (0.012) 

Family help with homework before junior high 13,013 1.2 0.8 
 

-0.020** (0.008) 

Student quarreled with parents in primary school 13,502 -1.5 -1.2 
 

-0.001 (0.009) 

Student enrolled in gifted academic class 13,554 -1.2 1.8 
 

0.013 (0.008) 

Student enrolled in arts gifted class 13,554 2.2 2.9 
 

-0.013 (0.015) 

Parents made efforts to place student in better class 13,508 2.2 3.2   0.035*** (0.010) 

Estimates in our trimmed sample of 227 schools and 853 classrooms. All estimators include school fixed effects. The reference distribution for the 

Guryan et al. (2009) and the Jochmans (2020) sorting statistics is the standard normal. The last column reports cluster-robust standard errors at the 

classroom level. ***, ** and * mark estimates statistically different from zero at the 90, 95 and 99 percent confidence level. 
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effects estimates if these characteristics are related to student achievement. Note, however, that if 

income sorting were related to students’ achievement at baseline, this sorting would have already 

been reflected in the baseline achievement sorting. This still leaves the possibility that parental 

income has not been productive for student achievement at baseline but might become productive 

afterwards. If that is the case, income sorting at baseline can bias peer effects upwards over and 

above achievement sorting. There is not much evidence of sorting on other characteristics in our 

trimmed sample, especially when using the Jochmans (2020) state-of-the-art test. There is some 

evidence of sorting on intellectual curiosity and, perhaps more importantly, sorting for students 

enrolled in gifted arts classrooms and students whose parents report making efforts to get them 

assigned to particular classrooms. Several institutional settings, including TEPS, could allow for 

this type of sorting to occur over and above achievement sorting. 

For student sorting on other characteristics to introduce bias in our peer effect estimates, however, 

a second necessary condition is for the student characteristic to be related to our peer achievement 

leave-out-mean measure. The last two columns of Table 2 show these tests. In our trimmed sample, 

the only potentially concerning characteristic which i) could affect student achievement over and 

above baseline achievement, ii) students are sorted on at baseline, and iii) is also related to peer 

achievement at baseline is whether parents made efforts to get their child assigned to a particular 

classroom. Of all the other characteristics that we test, only family income and family engagement 

with homework before baseline are negatively related to peer achievement. This last finding likely 

happens because trimming schools that sort based on achievement will reduce the relation between 

peer achievement and characteristics correlated to student achievement (such as income and 

homework engagement). These negative correlations with peer achievement should not bias peer 

effect estimates once we control for students’ own ability, which we do in all our models. Still, to 

account for any leftover correlated selection we also include controls for household income, family 

engagement with homework, gifted art classroom assignment, and parents’ pushiness to get child 

assigned to a particular classroom in our main specifications. We jointly refer to these as balancing 
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controls and note that they are neither crucial for our empirical design nor do they affect any of 

our results.6  

Overall, our fishing algorithm is an effective way to identify schools that systematically assign 

student to classrooms in our data. In the schools identified by the algorithm as balanced we find 

no substantive evidence of systematic assignment, and we will keep this trimmed sample as our 

estimation sample throughout our main analyses. In Section 5 we also show the results of a battery 

of additional sorting tests, discuss in detail other ways to identify our estimates, explore the issues 

of sample selectivity, and compare our trimmed sample with the initial TEPS sample. 

4 Main results 

4.1 The effect of classroom peer test scores on own test scores 

Now that we have established a sample where conditional random assignment of students to 

classrooms holds, we go on to establish the existence of academic peer effects. In its most basic 

form, we do this by regressing students’ standardized test scores in wave 2, Test Scoreics2, on the 

standardized classroom leave-out mean of test scores in wave 1, Test Scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ics1
−i , our measure of 

average peer test scores. To this simplest specification we add school fixed effects and students’ 

own test scores in wave 1, both crucial for identification (Angrist, 2014). We also consider 

specifications with and without the additional balancing controls (household income, family 

engagement with homework, gifted art classroom assignment, and parents’ pushiness to get child 

assigned to a particular classroom) and standardized scales of student inputs (school effort, 

initiative in class, truancy, academic self-efficacy, and mental health), parent inputs (investment 

in private tutoring, time investments, parental strictness and parental support), school and teacher 

inputs (school environment and teacher engagement). We do this to assess the extent to which 

                                                 

6 Also, note that due to the power in our data, we detect small differences in balancing tests that would have likely 

gone unnoticed in other designs. Our ex-post Minimum Detectable Effects (MDEs) for our balancing tests are as small 

as 2.2 percentage points in the chance of being female, and less than 1 percentage point in the likelihood of having a 

migrant background. For comparison, the MDEs of balancing tests are 17 percent of a standard deviation in math test 

scores in the STAR data (Dee, 2004), and 25 percentage points for being female and 10 percentage points for migrant 

in the Add Health data (Bifulco, Oh and Fletcher, 2014). 
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these covariates could capture omitted variable bias in our peer effect estimates. We cluster 

standard errors at the classroom level. 

Figure 3 shows strong positive peer effects in our setting. It further shows that including balancing 

controls or wave 1 inputs does not qualitatively change our estimates, though it does slightly 

increase precision. This estimate stability is a reassuring result which provides strong evidence of 

no omitted variable bias in our estimates, especially given the wide range of controls included in 

our educational input measures.  

 

Figure 3. The effect of better peer test scores on students’ own test scores in wave 2 

 

This figure reports estimates of regressing standardized student test scores in wave 2 on standardized average peer test scores 

in wave 1 in our sample containing 227 schools, 853 classes, and up to 12,816 students. Rows present results of models with 

different sets of control variables. The Baseline model includes wave 1 student test scores and school fixed effects. Balancing 

controls include household income, family engagement with homework, gifted art class assignment, and parents’ efforts to get 

child assigned to a particular classroom. W1 inputs include standardized scales of student inputs (school effort, initiative in 

class, truancy, academic self-efficacy, and mental health), parent inputs (investment in private tutoring, time investments, 

parental strictness and parental support), school and teacher inputs (school environment and teacher engagement). Horizontal 

bars `show the 99%, 95% and 90% confidence intervals for each estimate, based on standard errors clustered at the classroom 

level. Estimates in this figure are also shown in Appendix Table B1. 
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 Our preferred specification is on the last row of Figure 3, highlighted in bold. This specification 

controls for school fixed effects and student wave 1 test scores, as well as all wave 1 educational 

inputs and our four balancing covariates. It therefore identifies academic peer effects within Todd 

and Wolpin’s (2003) cumulative value-added specification; holding constant past outputs and 

educational inputs. This will prove important in the following sections. Our preferred estimates 

can be re-expressed as: 

Test Scoreics2 = 0.054
(0.017)

Test Scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ics1
−i + 0.562

(0.009)
 Test Scoreics1   + θ̂′Controlsics1 + μ̂s (1) 

where Controlsics1 includes balancing controls and wave 1 educational inputs.  

These estimates imply that having one standard deviation higher average peer test scores in wave 

1 increase own test scores by 5.4 percent of a standard deviation in wave 2. Comparing effect sizes 

in this literature is quite difficult; differences in standardized effect sizes across studies could 

capture true differences in responses to peer ability but could also reflect differences in standard 

deviations in peer achievement and student outcomes across settings. Assuming these standard 

deviations are comparable across studies, our peer effects are also similar (e.g. Imberman, Kugler 

and Sacerdote 2012; Brunello, De Paola and Scoppa 2010). Compared to studies where students 

are randomly assigned to peer groups, our estimates are around the median of estimate. Yet our 

estimated effect measures the impact of two years’ worth of exposure to classroom peers, which 

represents a strong dose compare to most comparable studies, thus our effect could also be seen as 

relatively small.  

To give this number more perspective, our estimated effect of a 1SD increase in average peer 

scores is about a tenth of the estimated effect of a 1SD increase in students’ own lagged test scores. 

Our peer effect estimate is about half the marginal effect of having at least one college-educated 

parent, and about a sixth of the unconditional test score gap between children of two-parent 

households and single-parent households. 

Another way of sizing the impact of higher-achieving peers is through the lens of socioeconomic 

inequality. Due largely to school sorting, the peers of poor students (with household monthly 

incomes under NT$20,000, corresponding to the 10th percentile poorest in the sample) have 68 

percent of a standard deviation lower scores than the peers of rich students (with household 
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monthly incomes over NT$100,000, corresponding to the top 15th percentile). The rich-poor test 

score gap in wave 2 test scores gap is 1.1 standard deviations. Putting these two numbers together, 

our linear peer effects imply that 3.5 percent of the rich-poor gap in standardized test scores can 

be explained by the richer students’ access to higher-achieving peers.  

4.2 The effect of classroom peer test scores on educational inputs 

In this section, we estimate the impact of higher-achieving academic peers on educational inputs 

in order to explain how academic peer effects work. We estimate variations of Equation (2) using 

our measures of educational inputs in wave 2 as outcomes. Figure 4 shows the effect of a 1SD 

increase in average peer test scores on wave 2 educational inputs in our estimation sample. Each 

row shows the effect of peer test scores on a different educational input. We show the 

unconditional mean of each outcome in square brackets to give context to these estimates. Navy 

blue estimates show effects student inputs, maroon estimates show effects on parent inputs, and 

teal estimates show effects on school and teacher inputs.  

A 1SD increase in average peer test scores decreases students’ school effort in wave 2 by 5.8 

percent of a standard deviation. While these effects are a priori surprising, they are difficult to 

benchmark against previous findings. Many studies have hypothesized study effort to be a key 

mechanism through which peer effects operate, yet few of them provide estimates of effort 

responses to higher-achieving peers. Among the few studies that do, there seems to be no 

consensus (Feld & Zölitz, 2017; Mehta, Stinebrickner & Stinebrickner, 2019; Fang & Wan, 2020). 

A 1SD increase in average peer test scores also increases students’ aspirations to go to university 

by 1.7 percentage points, and their expectations of actually going to university by 2.1 percentage 

points. These seem like small effects, corresponding to around 3-5 percent of their respective 

unconditional means, but become more sizeable when compared to the effect of other known 

shifters of aspirations. One could compare them, for example, to the 8.5 percent increase in 

parents’ higher education aspirations for girls from opening access to male-dominated professions 

in India (Beaman et al. 2012), the 5.2 percent increase in educational aspirations of cast-priming 

in high-casts in India as well (Mukherjee, 2015), or the precisely-estimated null effect of university 

information on educational aspirations of Colombian students (Bonilla-Mejia et al. 2019). 
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A 1SD higher-achieving classroom peers also increase parents’ time investment by 7.7 percent of 

a standard deviation. Our time investment measure in TEPS focuses in dinner time spent with 

parents, yet our estimated peer effect could be compared to half of Fredriksson, Oeckert, and 

Oosterbeek’s (2016) impact of having one student more in one’s classroom on parents’ likelihood 

of helping the child with homework, or with a fifth of Pop-Eleches and Urquiola’s (2013) effect 

of a child attending a marginally worse school. 

Finally, Figure 4 shows that we cannot detect effects of higher-achieving peers on many 

educational inputs that have previously been considered as key potential mechanisms behind peer 

effects, such as student initiative in class and class disruption. We estimate precise null effects on 

Figure 4. The effect of better peer test scores on educational inputs in wave 2 

 

This figure reports estimates of regressing educational input measures in wave 2 on standardized average peer test scores in 

wave 1 in our sample containing 227 schools, 853 classes, and 12,816 students. Rows present results of models with different 

educational inputs as outcomes. Unconditional means of each outcome are shown in square brackets, and [std] marks outcomes 

that have been standardized to have a mean of zero and a standard deviation of one. All models control for school fixed effects, 

student test scores in wave 1, balancing controls, and educational inputs in wave 1. Student, parent, and school & teacher inputs 

are shown in navy blue, maroon, and teal. Horizontal bars show the 99%, 95% and 90% confidence intervals for each estimate, 

based on standard errors clustered at the classroom level. Estimates in this figure are also shown in Appendix Table B2. 
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all measures of parental investment or parenting behavior other than parental time investments. 

This finding is important because while we find no parental behavioral responses to classroom 

peer ability, previous studies have shown evidence of parental behavioral responses to other types 

of public investments such as school admissions or classroom size. Lastly, we also find precisely 

estimated null effects for additional potential mechanisms, in contrast with studies which have 

found suggestive evidence on students’ perception about their school environment (e.g. Feld and 

Zölitz 2017) or teacher engagement in the classroom (Lazear, 2001; Duflo, Dupas and Kremer, 

2011; Golsteyn, Non and Zölitz, forthcoming). 

Importantly, we can detect relatively small effects for most of these mechanisms. Between all our 

estimates, the largest standard error for a standardized educational input is 0.026. A standard ex-

post Minimum Detectable Effect (MDEs) size calculation with 95 percent confidence and 80 

percent power implies that we could have detected effects as small as 0.026×2.8 = 7.3 percent of 

a standard deviation for outcomes such as initiative in class or teacher engagement. A 7.3 percent 

of a standard deviation in an outcome is a relatively small detectable effect; close to 10 percent of 

the gender gap in effort (women pay more effort than men), 18 percent of the difference between 

private tutoring investments of top-income parents and the rest, or 9 percent of the difference 

between the time investments of two-person and single-parent households. 

Overall, we show that higher-achieving peers decrease student effort, increase student aspirations 

and expectations to attend university, an increase in parental time investments. We can be made 

sense of the first two, seemingly contradicting, results in the lens of existing theories of 

performance under uncertainty; they could be consistent with exposure to higher achieving peers 

as a form of relative performance feedback. The sign of these estimates is in line with the 

theoretical model and recent field evidence of Azmat et al. (2019). The latter result on time 

investments provide new insights on the relatively thin evidence base on parents’ behavioral 

responses to school inputs. Our effects suggest that parents complement school inputs (i.e., better 

school peers) by increasing their own time investment. This collides with evidence that parents 

tend to treat school inputs and own time investments as substitutes (Pop-Eleches & Urquiola, 2013; 

Fredriksson, Oeckert, & Oosterbeek, 2016) but is consistent with other evidence from Taiwan that 

showing that parents complement teacher qualifications with financial investments of their own 

(Chan, Cobb-Clark & Salamanca, 2020).  
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More relevant is that—depending on the productivity of these educational inputs for student 

achievement—these input responses could all be legitimate mechanisms for explaining our 5.4 

percent of a standard deviation effect of higher-achieving peers on test scores. In the next section, 

we calculate how much of our estimated academic peer effect can be explained by these 

mechanisms.  

4.3 The share of the academic peer effect explained by changes in educational inputs 

We are now able to formally ask how much of the 5.4 percent effect of higher-achieving peers on 

students’ test scores can be explained by their intermediate impact on educational inputs. To do 

this we follow Gelbach’s (2016) decomposition, which we adapt to our setting in order to use only 

within-school variation by modifying the b1x2 Stata package.  

This decomposition calculates the total mediated effect (ME) of educational inputs on peer effects: 

 
ME =  ∑MEk

k

=∑
∂Ed. Inputics2

k

∂Test Scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ics1
−i

⏟          
(A)

 × 
∂Test Scoreics2

∂Ed. Inputics2
k

⏟          
 ,

(B)
k

 (2) 

where Ed. Inputics2
k  stands for educational input k in our set of inputs. The terms (A) are the causal 

effects of higher-achieving peers in wave 1 on educational inputs in wave 2 as shown in Figure 4. 

The only remaining pieces for the calculation of ME are therefore the terms (B) which are the 

partial returns (i.e., holding other inputs constant) to each of the educational inputs on student 

scores in wave 2. 

There is no ideal experiment for estimating (B), not even by independently and randomly varying 

each educational input over a period of two years and then estimating their causal impact on student 

test scores. The reason, as expressed by Todd and Wolpin (2003), is that such experiments would 

identify “policy parameters”—effect identified out of variation not subject to choices of parents or 

schools but exogenously induced—rather than “production function” parameters. Policy 

parameters are identified by variation in inputs exogenously pressed onto people, rather than by 

naturally-occurring variation through people’s investment decisions across the population (see 

e.g., Imai, Tingley & Yamamoto, 2013; Keele, Tingley & Yamamoto, 2015). Thus, policy 
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parameters answer many important questions but they do not recover returns to inputs, so their use 

is limited in a mediation analysis as described by equation (2).  

Todd and Wolpin (2003) argue for using (cumulative) value-added models to estimate the (B) term 

of equation (2). Todd and Wolpin (2007) and Fiorini and Keane (2014), among others, discuss 

these models in detail and show that they can identify the returns to educational inputs under 

relatively weak conditions, and we find ourselves in an ideal scenario for estimating these models. 

This is because in our setting we i) always use within-school variation which accounts for 

unobserved school-level heterogeneity, ii) can control for standardized test scores in wave 1, iii) 

can control for a myriad of educational inputs in wave 1, and iv) only need to estimate returns over 

a two-year period. For all these reasons, we estimate the terms (B) as the β̂k from the within-school 

cumulative value-added model: 

 

Test Scoreics2 =∑βk Ed. Inputics2
k

K

k=1

+ δCovariatesics1 + γs + υics2, (3) 

where Covariatesics1 includes student test scores, average peer test scores, and all other 

educational inputs in wave 1. To the extent that our school fixed effects account for school-level 

unobserved heterogeneity γs and extensive set of high-quality covariates account for endogeneity 

in observable educational inputs, equation (3) will identify unbiased estimates of the average 

partial return to each of the K educational input in our data.  

Figure 5 shows the within-school cumulative value-added estimates of the total and partial average 

returns of educational input in wave 2. Total effects are return parameters estimated one input at 

the time. Partial effects are the return parameters estimates β̂k obtained from equation (3) with the 

complete set of K inputs include as regressors together. In other words, they are the returns of each 

educational input k holdings constant all other K − 1 inputs. We rescale test scores and all 

continuous inputs in wave 2 so that each value can easily be interpreted as the return of a one 

standard deviation increase in standard deviations of scores. The circles show the total returns of 

each input, and the bars show the partial effect of each input with their corresponding 95 percent 

confidence interval. 
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We obtain precise estimates of the average partial returns to all educational inputs. The first row 

in Figure 5, for example, shows that a 1SD increase in school effort between waves 1 and 2 carries 

an average return of 9.3 percent of a standard deviation in test scores in wave 2. There are also 

positive returns to students’ initiative in class, university aspirations and expectations, as well as 

parental money investment in the form of private tutoring, parental support and university 

aspirations for their child. There is evidence of negative returns to students’ academic self-efficacy, 

and parental strictness and harshness. The differences between total and partial average returns 

reflect the fact that many of these inputs are correlated.  

Figure 5. Returns to educational inputs from cumulative value-added models 

 
This figure reports coefficient estimates of regressing student test scores in wave 2 on educational inputs in wave 2 in our 

estimation sample containing 227 schools, 853 classes, and 12,816 students. Rows present coefficients of different regressors; 

Unconditional means of each input are shown in square brackets and [std] marks inputs that have been standardized to have a 

mean of zero and a standard deviation of one; circles show total effects (one input at the time) and bars represent partial effects 

(all inputs jointly). All models control for school fixed effects, student test scores, average peer test scores, and educational 

inputs in wave 1. Student, parent, and school & teacher inputs are shown in navy blue, maroon, and teal. Spikes show 95% 

confidence intervals on partial effects based on standard errors clustered at the classroom level. These results are also available 

in Appendix Table B3. 
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Figure 6 puts together the results from Figures 4 and 5 to produce estimates of the mediated effect 

of peer effects by our measured educational inputs, as per equation (2). The bar in green shows 

that our mechanisms explain a negative and statistically but not economically significant amount 

of our estimated peer effect—which means that the effect of higher-achieving peers on these inputs 

and their estimated return jointly make it harder, not easier, to explain the academic peer effects. 

Jointly, all our educational inputs explain only -0.9 percent of a standard deviation of the 5.4 

percent of a standard deviation academic peer effect. This negative mediation is chiefly driven by 

the negative effects of higher-achieving peers on effort combined with the large and positive 

estimate of the returns to effort on academic achievement. None of the other inputs we consider 

has a statistically or economically significant mediating effect.  

Figure 6. Academic peer effects mediated by educational inputs 

 
This figure reports the mediated effects based on Gelbach’s (2016) decomposition of our academic peer effect estimate using 

only within-school variation in our estimation sample containing 227 schools, 853 classes, and 12,816 students. These estimates 

are produced using a modified version of the b1x2 Stata package. Rows present the mediated effect of different educational 

inputs in wave 2. All models control for school fixed effects, student test scores, average peer test scores, and educational inputs 

in wave 1. The total mediated effect is shown in green, and student, parent, and school & teacher inputs are shown in navy blue, 

maroon, and teal. p-values shown are based on standard errors clustered at the classroom level. These results are also available 

in Appendix Table B4. 
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Overall, the results in this section show that, in spite of having precise estimates of i) academic 

peer effects and of ii) the effects of higher-achieving peers on educational inputs, which could 

potentially act as mechanisms for these peer effects, our potential mechanisms explain practically 

nothing of peer effects. These new results show the difficulties of learning about the mechanisms 

that drive social interaction effects and suggest that the prevailing microeconometric approach to 

exploring these mechanisms can be of limited use. Puzzling results such as these open a number 

of questions and can prove to be a knowledge base to build on, as long as its foundations are solid. 

Precisely because of this, in the next section we show that our main results and conclusions are 

robust to a myriad of specification checks and potential concerns. In particular, section 5.4. shows 

that these results on the absence of mediation are not hiding heterogeneity either in the sense that 

higher-achieving peers affect subgroups of students differently, or in the sense that subgroups of 

students are affected by higher-achieving peers through different mechanisms. 

5 Sensitivity Analyses 

In this section, we discuss the sensitivity of our results along four dimensions: i) robustness to 

changes in our identification strategy; ii) robustness to the effects of measurement error in our 

data; iii) robustness of our inference to different constructions of standard errors; and iv) robustness 

of our conclusions on the mediation analyses to the presence of heterogeneous peer effects. 

5.1 Robustness of our identification strategy 

Here, we first provide additional evidence of random assignment of students to classrooms within 

schools in our trimmed sample using permutation-based sorting tests, and using non-parametric 

sorting tests. Many of these tests have become standard in the empirical peer effects literature. We 

then exploit the richness of our data—in particular the fact that we observe many pre-assignment 

characteristics of students, parents and teachers—to show that proportional selection on 

unobservable characteristics is very unlikely to be driving our results. 

5.1.1 Permutation-based sorting tests 

In the empirical peer effects literature, permutation-based tests of random assignment of students 

to peer groups have become very popular. These tests compared the actual student group 
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composition in the data to counterfactual compositions simulated under the null of random 

assignment, as described in Section 3.2. As an additional check for random assignment in our data, 

we estimate permutation-based sorting tests akin to those in e.g., Carrell and West (2010) and Lim 

and Meer (2017, 2019) in our trimmed sample.  

For these tests, we simulate 10,000 classrooms under the null of random assignment of students to 

classrooms within schools. We do so by randomly drawing sampled students with replacement 

and keeping the core structure of the data—respecting students’ assignment to schools, and number 

and size of classrooms within each school. We then calculate the mean of our key pre-treatment 

characteristics in each of the 10,000 synthetic classrooms. Finally, for each classroom, we count 

the times the synthetic classroom mean of each characteristic was more extreme than the actual 

classroom mean, relative to the schools mean. The share of times this happens corresponds to the 

classroom-level empirical p-value of a test of random assignment of students to classrooms within 

schools based on that characteristic.  

Appendix Table B5 shows these permutation-based empirical p-values for each key pre-

determined characteristic separately. Under random assignment, the shares in the second through 

fourth column should be close to the nominal rejection rates of 0.10, 0.05 and 0.01 in most or all 

rows. The evidence in this table strongly supports the idea of random assignment to classrooms 

within schools in our trimmed sample. 

5.1.2 Non-parametric sorting test 

As implemented, balancing tests and sorting tests all have one important shortcoming: their 

linearity. Balancing tests, for example, assess whether female students are assigned to higher-

achieving peers. Sorting tests try to capture whether female students end up in classrooms with 

other female students. But these tests do not truly test for what random assignment would imply: 

whether classrooms systematically differ in these pre-assignment characteristics in any way. In 

other words, these tests do not test non-parametrically for systematic assignment of students to 

classrooms. A few studies do use this non-parametric sorting test (Ammermueller and Pischke, 

2009; Sojourner, 2013; Feld and Zölitz, 2017).  
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We implement this test in the following steps. First, we estimate school-by-school regressions of 

each pre-assignment characteristic on a set of classroom dummies. Second, we jointly test the 

statistical significance of these classroom dummies and collect the p-values of these tests. We end 

up with a set of 2,790 p-values; one for each of the 227 schools in our sample and each of our key 

18 pre-assignment characteristics. We then note that, under the null of random assignment of 

classrooms to schools, these p-values should be uniformly distributed. Therefore, as a third step, 

we check whether more than ten, five and one percent of the school-level p-values fall under the 

nominal values 0.10, 0.05 and 0.01 for each characteristic. 

Appendix Table B6 shows empirical p-value distributions for each characteristic separately. 

Consistent with our tests in Section 3.4, these results also show some evidence of minor sorting 

based on intellectual curiosity, gifted arts classroom enrolment, and parents pushing for 

assignment to particular classrooms. Overall, however, these tests provide yet again evidence in 

strong support of random assignment to classrooms within schools in our trimmed sample.  

5.1.3 Proportional selection on unobservable to observable characteristics 

Our trimmed sample is chosen in a data-driven way that ensures that key pre-assignment 

characteristics are unrelated to average peer test scores. This identification strategy relies on our 

ability to find data that reflects a clean quasi-experiment in classroom allocation, yet systematically 

excludes entire schools from our sample, which might lead to sample selection issues. Still, we ask 

ourselves whether the few observable characteristics that remain correlated to higher-ability peers 

could present reasonable concerns about unobserved heterogeneity. This calls for an analysis of 

proportional selection on observable characteristics, as discussed in Altonji et al. (2005) and Oster 

(2019). The two conditions for this analysis to make sense are i) that our observable characteristics 

for these analyses are a random sample of all determinants of student achievement, and ii) that the 

number of observed and unobserved determinants of student achievement are large and neither 

element is dominating. Along the argument lines of Altonji et al. (2005), we assume that the TEPS 

fulfils both conditions. 

We implement this analysis by calculating Oster’s (2019) δ, the share of proportional selection 

needed to explain away the entire peer effect we estimate. Values of δ > 1 imply that the selection 

on unobservable characteristics would need to be at least as large as the selection on observable 
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characteristics to explain away the entire peer effect estimate, which, given the data and data 

context, is an unreasonable assumption. A δ < 1 implies that the omitted variable bias from 

unobservable variables positively correlated with the observable variables included would bias the 

peer effects away from zero, not towards, and should therefore not be concerning as confounders. 

In this type of analysis, thus, finding values of δ between zero and one is worrisome, and could 

indicate a potential concern for unobserved selection affecting results. The observables we use for 

these analyses are extensive: they include our balancing controls (household income, family 

engagement with homework, gifted art classroom assignment, and parents’ pushiness to get child 

assigned to a particular classroom) and our standardized measures of student, parent, school and 

teacher educational inputs in wave 1. Assuming that selection on unobservable characteristics 

occurs in proportion to the selection on this set of variables implies, by exclusion, that school fixed 

effects and students’ own test scores in wave 1—a priori essential for our identification strategy 

and standard in the literature—cannot inform the proportional selection analyses. We also use a 

hypothetical maximum R-Squared value of 1.3 times the R-Squared of the unrestricted model, 

which is the standard choice for these analyses. 

Appendix Table B7 shows Oster’s δ for all our main estimates estimating using Stata’s psacalc 

command. For nearly all our estimates, Oster’s δ is negative which implies that proportionally 

selection on unobserved confounders are unlikely to explain our effects. The one exception is the 

δ of 0.10 for the effect of higher-achieving peers on parental investments in tutoring, which is 

anyway insignificantly different from zero so none of our conclusions change following the results 

of this analysis. Overall, we conclude that proportional selection on unobservable variables cannot 

explain away any of our findings. 

5.2 Robustness to measurement error and selective attrition 

We now turn our focus to the measurement error in our data We show that our main estimates i) 

are robust to using different measures of student and peer academic ability, ii) are not attenuated 

by measurement error in average peer test scores, and iii) are not biased by the fact that we do not 

observe whole classrooms.  
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5.2.1 Main results with alternative measures of ability 

Our main results use the TEPS scores in the comprehensive ability test. As discussed in Section 

3.2, this test was designed by TEPS team and uses 75 multiple-choice question to measure of 

students’ cognitive ability and analytical reasoning. However, after a series of factor analyses and 

after estimating 3-parameter Item Response Theory (IRT) models, the TEPS team could also 

identify two highly correlated but distinct subcomponents measuring analytical ability and 

mathematical ability based on disjoint subsets of test questions. The IRT models were also used to 

produce the standardized Bayesian posterior means of the three components identifiable in the 

test—the general ability component and the analytical ability and mathematical ability 

subcomponents.7 

Appendix Table B8 shows that our main results are robust to using the analytical and mathematical 

subcomponents of the comprehensive ability test scores as measures of student and peer ability 

(columns 1 and 2).  Our main results are also robust to using the Bayesian posterior means of these 

components, arguably a more precise and efficient measure of ability (columns 3 through 5).  

5.2.2 Correction for classical measurement error in peer ability 

Even in excellent measures of student and peer ability, such as the well-designed standardized test 

scores in TEPS, there will still be some measurement error. Under random assignment and with 

classical measurement error (i.e., independent of all covariates and of true ability), this 

measurement error will attenuate our peer effect estimates (Sojourner, 2013; Feld and Zölitz, 

2017). We can address this attenuation bias in two similar ways. Noting that the analytical and 

mathematical subcomponents of test scores are measured with disjoint sets of questions, we can 

use average peer test scores using one subcomponent as an instrument for average peer test scores 

using the other in an instrumental variable (IV) estimator. See e.g., Salamanca et al. (2020) for a 

similar approach to account for measurement error in personality traits. This approach would 

eliminate attenuation bias from classical measurement error under two assumption: i) that both 

subcomponents have a strong common element of overall ability, and ii) that measurement error 

                                                 

7 See http://www.teps.sinica.edu.tw/description/TestingReport2004-2-10.pdf (in Mandarin) for a description of these 

analyses.   

http://www.teps.sinica.edu.tw/description/TestingReport2004-2-10.pdf
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in test questions is uncorrelated across subcomponents. The first assumption is well supported by 

our data and by the TEPS team factor and IRT analyses. The second assumption is stronger; if it 

does not hold it would result in some attenuation bias left in the IV estimate. 

Appendix Table B9 shows that, although less precisely estimated due to the usual efficiency loss 

from instrumental variable models, the IV point estimates are near-identical to our main results 

(columns 1 and 2). We thus view this as evidence of little attenuation bias due to classical 

measurement error in our estimates. 

One potential problem with the estimators above is that the IV estimates need to be interpreted as 

academic peer effects in analytical and mathematical ability, rather than in comprehensive ability. 

We address this problem by constructing a ‘mixed IV’ estimator. In this estimator, we first 

construct an ability measure that, for each student, is randomly defined as either the analytical 

subcomponent score or the mathematical subcomponent score with equal probability. This ability 

measure is therefore an equal-weighted average of the analytical and mathematical subcomponents 

and can be interpreted as measuring general ability. We call this our ‘mixed ability’ measure. We 

also construct an ability instrument that is defined by the same random process to be the 

subcomponent that was not assigned as ability. For example, if for student 𝑖 ability is measured as 

the analytical subcomponent score, then the ability instrument is defined as the mathematical 

subcomponent score. We call this our ‘mixed ability instrument’. Under the same assumptions 

above, an IV estimate that instruments our mixed ability with our mixed ability instrument also 

corrects for attenuation bias while identifying academic peer effects using general ability, rather 

than analytical or mathematical ability. We show that this new estimator produces very similar 

results to our main peer effect on test scores (Appendix Table B9, column 3). It also produces 

slightly larger estimated magnitudes of the effect of higher-achieving peers on study effort and 

students’ university aspiration and expectations, and similar estimates for the effect on parental 

time investments (Appendix Table B10). Back-of-the-envelope calculations show that these 

slightly larger estimates do not change our conclusions on the mediated effects of higher-achieving 

peers. We thus conclude that measurement error does not alter any of our main findings.  
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5.2.3 Sojourner (2013) correction for incomplete classroom sampling 

Many empirical peer effect studies, including ours, has incomplete classroom data which results 

in incomplete sampling of students’ peer group. Sojourner (2013) shows that this issue can result 

in bias in peer effect estimates that is similar to classical attenuation bias under random assignment, 

and much more difficult to sign and quantify under non-random assignment. He also proposes a 

correction for this bias that relies on i) weighting estimates by the share of peers sampled and ii) 

controlling for these shares at the school level. Often these last controls are multicollinear with the 

weighted peer measures, so he also suggests less restrictive estimators that control for the share of 

peers sampled within predetermined school clusters. We implement both methods in our data to 

evaluate the extent of this bias in our main results. The left-most column on the table implements 

Sojourner’s preferred correction which can lead to substantial loss of power because it heavily 

restricts the identifying variation used by the estimator. The second through sixth columns 

implement specifications which trade off more power for less bias reduction, from left to right. 

Appendix Table B11 shows substantially larger effects of higher-achieving peers on student test 

scores and proportionally larger effects on students’ university aspirations and expectations and 

parental time investments. This is all consistent with Sojourner’s findings and with the data 

originating from conditional random assignment to classrooms within schools. The analyses do 

not reveal other effects of higher-ability peers. Moreover, since the attenuation of all our estimated 

effects is proportional, our conclusions about mediated peer effects remains unchanged. This 

suggests that not observing complete classrooms in our data could lead to understating the 

importance of academic peer effects, but does not affect our (in)ability to explain their 

mechanisms. 

5.3 Randomization inference and multiple hypotheses testing correction 

Having established the robustness of our point estimates of peer effects, in this subsection we show 

that our inference on these effects is robust to i) constructing standard errors based on recent 

randomization inference techniques and ii) to accounting for multiple hypotheses testing in our 

standard error calculations. 
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We first reassess inference on our main results using Young’s (2019) randomization-t procedure. 

Our analyses benefit from this procedure because of the potential influence of a few high-leverage 

students, classrooms or schools, and we want to ensure that our inference is robust to this 

occurrence. We also want to use inference that does not make strong assumption on the structure 

of error terms given the complexity of the TEPS sampling design and peer treatment. Other 

benefits of randomization inference, such as i) correcting for few treatment clusters or ii) issues of 

joint testing are less important for this study, because i) we observe several classrooms per school, 

and ii) each regression has one treatment effect of interest. 

We construct randomization-t based empirical p-values via a very similar simulation procedure to 

the one used for permutation tests. The key difference is that, in each simulation, we capture the t-

statistics of interest—the coefficient of the key variable of interest divided by its cluster-robust 

standard error—and construct empirical p-values based the share of occurrences where simulated 

t-statistics are more extreme than our actual t-statistic of interest. We use 10,000 simulations of 

random assignment to classroom within schools to produce randomization-t empirical p-values for 

our main results. Appendix Table B12 shows that when using randomization-t inference p-values 

for conducting inference, our main conclusions on the effects of higher-achieving peers hold at the 

5% significance level for student achievement and parental time investments, and at the 10% 

significance level for student university aspirations and expectations. 

In a second analysis, we adjust our inference for multiple hypotheses testing: the problem that the 

chance of falsely rejecting a correct null hypothesis increases with the number of tests performed. 

We adjust for this by implementing the Romano-Wolf multiple hypothesis correction (Romano 

and Wolf, 2005a,b) using Stata’s rwolf command (Clarke et al., 2019). This procedure ensures 

that the familywise error rate—the probability of committing at least one Type I error across a set 

of hypotheses tested—does not exceed its predetermined significance. We consider all our main 

results to be part of the same family of tests. Appendix Table B12 shows that our main conclusions 

on the effect of higher-achieving peers on student achievement and on parental time investment 

hold at the 10% significance level, but our evidence on students’ university aspirations and 

expectations now appear not to be statistically significant.  
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Overall, with these different inference methods we still find strong evidence of academic peer 

effects in our data but somewhat weaker evidence of significant effects on educational inputs. This 

reinforces our conclusions of no mediated effects for academic peer effects. 

5.4 Heterogeneous peer effects and robustness of mediated effects 

Finally, we explore the sensitivity of our mediation analyses. Our chief concern here is the 

possibility that our lack of meaningful mediation can occur not because educational inputs cannot 

explain academic peer effects, but rather as the result of heterogeneity peer effects across 

subgroups. Heterogeneity can occur in two forms: firstly, academic peer effects could vary widely 

across subgroups—a result found in several studies across ability (Carrell, Fullerton and West, 

2009), gender (Whitmore, 2005; Lavy and Schlosser, 2011), race (Hoxby, 2000, Hoxby and 

Weingarth, 2005), but secondly and perhaps most importantly, the drivers of peer effects for each 

subgroup could also widely differ, as suggested by Brady, Insler and Rahmam (2017). For 

example, higher-achieving peers could improve test scores of low-ability students because they 

reduce the amount of classroom disruption (see e.g. Lavy, Paserman and Schlosser, 2011) and 

improve test scores of high-ability students because they increase effort. Yet we might be unable 

to detect enough mediation via truancy and effort on the average academic peer effect. This form 

of heterogeneity would wrongly lead us to conclude that truancy and effort cannot explain at least 

part of academic peer effects. One way to assess whether this particular type of heterogeneity is a 

likely explanation for our findings is to estimate the heterogeneity of peer effects and their 

mediation via educational inputs across various subgroups.  

There are countless dimensions to explore heterogeneity in academic peer effects in our data. 

Based on existing heterogeneous effects in the academic peer literature, and on a broader literature 

on the sociodemographic predictors of student test scores, we chose to explore peer effect and 

mediation heterogeneity across: student ability, gender, household income, parental education, 

public vs private schooling, and teacher experience. Appendix Table B13 shows that, by and large, 

there is little subgroup heterogeneity in our estimated academic peer effects and their mediation. 

Academic peer effects are slightly larger at the top and middle of the student ability distribution 

and with highly experienced teachers, yet are the same across student gender, household income, 

parental education. More importantly, our inputs can still mediate either small or negative parts of 



 
41 

these academic peer effect for any one of these subgroups. Altogether, we show strong evidence 

of little heterogeneity in academic peer effects and in mediated effects. 

Based on these results we conclude that subgroup heterogeneity is not a likely explanation for the 

fact that our many educational inputs do not mediate academic peer effects.  

6 Conclusions 

We estimate the effect of being randomly assigned to classrooms with higher-achieving peers on 

students’ standardized test scores two years later, and on many other intermediate outcomes of 

students, their parents, and their teachers. We conduct a formal mediation analysis of academic 

peer effects to explore several potential mechanisms, one of the first ones of its kind in a field with 

over twenty years of research and hundreds of articles. Our study thus gives the most 

comprehensive view of how much academic peer effects are explained by changes in educational 

investments in a setting with a credible identification strategy. 

Students assigned to classroom peers with one standard deviation higher test scores at the 

beginning of middle school experience an economically sizable 5.4 percent of a standard deviation 

increase in their own standardized test scores two years later. These higher-achieving classroom 

peers also decrease student school effort, increase students’ aspirations and expectations to go to 

university, and increase the time parents spend with them. Higher-achieving peers have precisely 

estimated zero effects on many other educational inputs we consider, including initiative in class, 

mental health, cheating on exams or truant behavior. 

For producing these results, we use data in a setting with a well-documented country-wide mandate 

of random assignment of students to classrooms within schools. The data, however, shows that 

this random assignment was likely not upheld everywhere, which is not entirely surprising: we can 

think of legal and illegal ways in which sorting can still occur—for example, via allowed “talent” 

classrooms in schools, or due to principals sorting students into classrooms in defiance of the 

mandate. Similar violations to national mandates are common in similar settings (e.g., Gong, Lu, 

& Song, 2019; Eble & Hu, 2019). We develop a data-driven procedure to remove schools likely 

to be defying the mandate of random assignment from our estimation sample and show that data 

in this trimmed sample is strongly consistent with random assignment. This fishing algorithm can 
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be used to improve quasi-experimental designs in settings where random assignment to peers is 

suspected to be violated in some, but not all, assignment groups. It can more generally be used in 

any setting where imperfect compliance of (quasi-)experimental treatment assignment is 

suspected. 

Our findings contribute to diverse literatures on the effects of higher-achieving peers on various 

educational inputs (e.g., Bursztyn, and Jensen, 2015; Booij, Leuven, and Oosterbeek, 2017; 

Bursztyn, Egorov, and Jensen, 2018), the determinants of educational aspirations (e.g., La Ferrara, 

2018; Carlana, 2019), and parental reactions to school inputs (e.g., Pop-Eleches & Urquiola, 2013; 

Fredriksson et al. 2013; Cobb-Clark et al. 2020). 

Yet we also find that either of these intermediate effects, nor all of them as a whole, are able to 

account for the large increase in scores that students experience down the road.  

Since our academic peer effects remain largely unexplained, even after covering such a large 

battery of agents and inputs in the education production function, it could be tempting to conclude 

that academic peer effects are unexplainable by current methods. It could also be tempting to resort 

to new ways of modeling social interactions, rather than provide more empirical findings using 

tried and true data and empirical designs. Instead, we prefer to go back to Manski’s (2000) seminal 

work, in which he explained how crucial standard economic concepts are for modeling social 

interactions: expectations, preferences, market incentives. Our results show evidence for both core 

types of social interactions described by Manski — peer effects in expectations and peer effects in 

outcomes. We therefore see our results an invitation to study how peer effects in expectations 

translate into choices performance (or why they fail to do so). We are also eager to explore how 

these processes might systematically vary across settings and circumstances, including the role of 

competitive environments, the endogenous choice of peers within classrooms, whether peer 

interactions are invigilated and controlled, and by whom. Recent work by e.g. Burstzyn and Jensen 

(2015), Bedard and Fischer (2019), and Babcock et al. (2019) is already making great progress in 

this direction. 

Our results also get us closer to using peer effects to confidently inform and design classroom 

assignment policies. A pervasive concern with systematic assignment policies is that their benefits 

might come with unmeasured cost on, e.g. classroom disruption, increasing stress, deteriorating 



 
43 

mental health, and higher effort to keep up with one’s higher-achieving peers. Our study shows 

that many of these concerns are unfounded. And yet, like other studies, we find sufficiently non-

linear peer effects across student ability to make Pareto-improving class assignment policies a 

possibility (See Appendix Table B13). Designing such class reallocation improvements can be 

difficult, and even then the expected gains might not be realized (Graham, Imbens & Ridder, 2014; 

Carrell et al., 2013). Nevertheless, our findings rule out many behavioral reactions to higher-

achieving peers that could complicate the design of such policies, and further rule out several 

usually unobserved costs that could subtract from any realized gains. Altogether, this brings back 

the possibility of class reassignment policies that improve student welfare. 
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APPENDICES 

Appendix A. The construction of standardized scales in TEPS 

We summarize the wealth of data available in TEPS into standardized summary indices using 

commonly used data reduction methods. We proceed as following:  

1. Compute Spearman correlation of all potential variables in the factor to construct: eliminate 

very low correlates 

2. Run preliminary PCA on remaining variables 

3. Count number of missing values by individual across variables 

4. Standardize each variable, construct preliminary index as row-mean across standardized 

variables 

5. Cut preliminary index into deciles: construct bins of similar input 

6. For each variable, construct median within index decile among people used for imputation 

(less than 1/3 missing) 

7. For each variable, if missing item and less than 1/3 missing, replace missing value by 

median within index decile. 

8. Re-run PCA now using variables with imputed values 

9. Check visually that factor with and without imputed values have same distribution 

In the long table below, we report for each index we use: 

i) the variables used,  

ii) the initial number of observations for each of these items separately,  

iii) the factor loadings from the preliminary PCA, prior to imputation,  

iv) the number of observations for the factor before and after imputation,  

v) the eigenvalue of the first factor before and after imputation, 

vi) the factor loadings from the final PCA, after imputation.  

Factor for which no imputation has been performed are indicated by blanks for factor loadings 

after imputation, observations after imputation and eigenvalue of first factor after imputation.  
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Table A1. Construction of standardized scales of educational inputs in the TEPS data 

    Factor loadings 

  Obs. Original Imputed 

Effort wave 1        

Chinese teacher's assessment of student effort in class 18,508 0.75 0.76 

English teacher's assessment of student effort in class 17,961 0.73 0.75 

Math teacher's assessment of student effort in class 18,126 0.71 0.72 

Dao Shi report student always completes homework on time 18,571 0.62 0.63 

Chinese teacher's report student always completes homework on time 18,627 0.70 0.71 

English teacher's report student always completes homework on time 18,233 0.67 0.68 

Math teacher's report student always completes homework on time 18,394 0.65 0.66 

   Factor observations   16,004 19,231 

   First factor eigenvalue   3.35 3.46 

Effort wave 2       

Chinese teacher's assessment of student effort in class 17,120 0.78 0.79 

English teacher's assessment of student effort in class 16,509 0.76 0.77 

Math teacher's assessment of student effort in class 16,612 0.74 0.76 

Dao Shi report student always completes homework on time 17,161 0.71 0.72 

Chinese teacher's report student always completes homework on time 17,107 0.68 0.69 

English teacher's report student always completes homework on time 16,657 0.63 0.65 

Math teacher's report student always completes homework on time 16,698 0.62 0.64 

   Factor observations   14,251 17,950 

   First factor eigenvalue   3.48 3.62 

Mental health wave 1       

Self-reported frequency feeling down or frustrated 19,781 0.74 0.74 

Self-reported frequency feeling troubled, worried 19,877 0.74 0.73 

Self-reported frequency want to scream or smash something 19,854 0.64 0.64 

Self-reported frequency feeling body shaking, unable to focus 19,839 0.68 0.68 

Self-reported frequency feeling lonely 19,793 0.76 0.76 

Self-reported frequency hopeless 19,856 0.75 0.75 

   Factor observations   19,493 19,934 

   First factor eigenvalue   3.09 3.09 

Mental health wave 2       

Self-reported frequency feeling down or frustrated 18,716 0.71 0.71 

Self-reported frequency want to scream or smash something 18,712 0.67 0.67 

Self-reported frequency feeling body shaking, unable to focus 18,695 0.62 0.62 

Self-reported frequency feeling lonely 18,676 0.64 0.64 

Self-reported frequency feeling that you have bad fortune 18,658 0.59 0.59 

Self-reported frequency feeling easily irritated by others 18,682 0.62 0.62 

Self-reported frequency guilty, regret over some things 18,654 0.58 0.58 

   Factor observations   18,355 18,782 

   First factor eigenvalue   2.82 2.83 

Truancy wave 1       

Self-reported frequency cutting or skipping class 19,846 0.70 0.70 

Self-reported frequency physical fights or quarrels with teachers 19,790 0.61 0.6 

Self-reported frequency watching porn 19,867 0.65 0.64 

Self-reported frequency substance abuse (tobacco, alcohol, drugs) 19,865 0.74 0.73 

Self-reported frequency running away from home 19,880 0.73 0.73 

Self-reported frequency stealing or destroying others' property 19,862 0.68 0.67 
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    Factor loadings 

  Obs. Original Imputed 

   Factor observations   19,614 19,929 

   First factor eigenvalue   2.83 2.77 

Truancy wave 2       

Self-reported frequency cutting or skipping class 18,718 0.51 0.52 

Self-reported frequency physical fights or quarrels with teachers 18,737 0.59 0.59 

Self-reported frequency watching porn 18,729 0.42 0.42 

   Factor observations   18,611 18,799 

   First factor eigenvalue   0.78 0.79 

Self-efficacy wave 1       

I am good at presentations or expressing my points of view 19,749 0.65 0.65 

I am good at coordinating with other people in a group 19,800 0.68 0.68 

I can plan things well no matter how trivial they are 19,810 0.74 0.73 

I cooperate with everyone very well 19,798 0.62 0.62 

I always come up with solutions to problems 19,758 0.57 0.57 

I have always reviewed what I learn since elementary school 19,847 0.59 0.59 

I always try to figure out answers whenever have questions 19,808 0.59 0.59 

   Factor observations   19,346 19,909 

   First factor eigenvalue   2.83 2.83 

Self-efficacy wave 2       

I am good at presentations or expressing my points of view 18,686 0.54 0.53 

I am good at coordinating with other people in a group 18,744 0.58 0.58 

I can plan things well no matter how trivial they are 18,731 0.65 0.64 

I cooperate with everyone very well 18,709 0.55 0.54 

I always come up with solutions to problems 18,708 0.62 0.62 

My friends think of me as a person who always has lots of ideas 18,606 0.54 0.54 

   Factor observations   18,384 18,795 

   First factor eigenvalue   2.02 2.01 

Initiative in class wave 1       

Chinese teacher's assessment of student initiative to participate in class 18,635 0.52 0.53 

English teacher's assessment of student initiative to participate in class 18,307 0.52 0.54 

Math teacher's assessment of student initiative to participate in class 18,367 0.52 0.54 

   Factor observations   17112 19219 

   First factor eigenvalue   0.81 0.86 

Initiative in class wave 2       

Chinese teacher's assessment of student initiative to participate in class 17,161 0.58 0.61 

English teacher's assessment of student initiative to participate in class 16,787 0.61 0.64 

Math teacher's assessment of student initiative to participate in class 16,698 0.59 0.62 

   Factor observations   15,426 17,791 

   First factor eigenvalue   1.06 1.16 

Money wave 1       

Hours per week spent on tutoring in/outside school 19,851 0.60 0.60 

Amount paid for this child's tutoring classes 19,710 0.60 0.60 

   Factor observations   19,573 19,988 

   First factor eigenvalue   0.71 0.73 

Money wave 2       

Hours per week spent on tutoring outside school 18,747 0.78 0.78 

Monthly expenditures paid this semester for this child's tutoring classes 18,755 0.78 0.78 

   Factor observations   18,586 18,916 
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    Factor loadings 

  Obs. Original Imputed 

   First factor eigenvalue   1.21 1.22 

Time wave 1       

How often parents go to bookstores or expos with child 19,750 0.53 0.53 

How often parents go to concerts or performances with child 19,750 0.53 0.53 

   Factor observations   19,743 19,757 

   First factor eigenvalue   0.55 0.55 

Time wave 2       

Weekly number of dinners with the child 18,783 0.44 0.45 

Spouse: Weekly number of dinners with the child 18,493 0.44 0.45 

   Factor observations   18,457 18,819 

   First factor eigenvalue   0.39 0.41 

Parent strictness wave 1       

My father is strict 19,851 0.51 0.51 

My mother is strict 19,842 0.51 0.51 

   Factor observations   19,739 19,928 

   First factor eigenvalue   0.52 0.53 

Parent strictness wave 2       

How many of your parents set strict rules for your daily routine? 18,828 0.61 0.61 

How many of your parents set strict rules about spending money? 18,819 0.54 0.54 

How many of your parents set strict rules about demeanor? 18,806 0.63 0.63 

How many of your parents set strict rules about health habits? 18,731 0.60 0.60 

How many of your parents set strict rules about making friends? 18,821 0.57 0.57 

How many of your parents uses guilt and emotional blackmail? 18,821 0.51 0.51 

How many of your parents does not allow you to argue with them? 18,816 0.50 0.50 

How many of your parents discipline you very strictly? 18,809 0.53 0.53 

   Factor observations   18,648 18,831 

   First factor eigenvalue   2.54 2.55 

Parental emotional support wave 1       

My father discusses student's future study and career 19,854 0.46 0.46 

My father discusses my feelings and thoughts 19,764 0.59 0.58 

My mother discusses student's future study and career 19,822 0.49 0.50 

My mother discusses my feelings and thoughts 19,816 0.64 0.64 

My father accepts me as I am 18,993 0.49 0.51 

My mother accepts me as I am 19,370 0.49 0.49 

My family provides strong emotional support 19,652 0.53 0.54 

In my family, we discuss together important decisions 19,528 0.56 0.57 

   Factor observations   17,729 19,973 

   First factor eigenvalue   2.28 2.33 

Parental emotional support wave 2       

My parents pay attention to my ideas and thoughts 18,816 0.66 0.66 

I seek my parents' help when I encounter difficulties 18,811 0.67 0.67 

My parents accept me as I am 18,799 0.62 0.62 

   Factor observations   18,769 18,827 

   First factor eigenvalue   1.27 1.27 

School environment wave 1       

My school is an interesting place 19,513 0.47 0.48 

My school is fair in terms of rewards and grading 19,557 0.54 0.55 

The campus of my school is safe 19,567 0.63 0.63 
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    Factor loadings 

  Obs. Original Imputed 

My school cares about their students 19,481 0.71 0.71 

My school has a great atmosphere for learning 19,456 0.64 0.65 

   Factor observations   18,701 19,903 

   First factor eigenvalue   1.83 1.86 

School environment wave 2       

My school's requirements on students are quite reasonable 18,614 0.39 0.39 

My school is fair in terms of rewards and grading 18,741 0.46 0.46 

The campus of my school is safe 18,709 0.56 0.56 

My school cares about their students 18,340 0.62 0.62 

My school has a great atmosphere for learning 18,690 0.52 0.52 

   Factor observations   18,053 18,814 

   First factor eigenvalue   1.33 1.34 

Teacher engagement wave 1       

How many of my teachers know the name of every student 19,865 0.38 0.39 

How many teachers encourage student when they study hard 19,780 0.48 0.48 

How many teachers use different teaching methods/materials 19,846 0.55 0.55 

How many teachers give homework to increase students' chance to practice 19,836 0.48 0.49 

How many teachers ask reasons when students fail on homework 19,812 0.46 0.48 

How many teachers give a review after every exam 19,604 0.48 0.49 

   Factor observations   19,210 19,953 

   First factor eigenvalue   1.35 1.4 

Teacher engagement wave 2       

How many teachers talk about people skills in class 18,795 0.70 0.70 

How many teachers often discuss life goals/conduct career planning in class 18,784 0.73 0.73 

How many teachers often recommend good books and encourage reading in class 18,783 0.62 0.62 

How many teachers often use real life and practical examples in class 18,772 0.62 0.62 

How many teachers take on his spare time to talk to students who have personal 

problems 18,795 0.53 0.53 

How many teachers often use guilt or emotional blackmail 18,784 0.45 0.45 

How many teachers praise me when I study hard 18,744 0.53 0.53 

   Factor observations   18,590 18,820 

   First factor eigenvalue   2.56 2.56 
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Appendix B. Additional Tables and Figures 

Table B1. The effect of better peer test scores on students’ own test scores in wave 2 

Outcome: Student test scores in wave 2 [std] 

     
Peer test scores [std] 0.042** 0.047*** 0.054*** 0.054*** 

                               (0.017) (0.017) (0.017) (0.017) 

Own test scores [std] 0.708*** 0.703*** 0.566*** 0.562*** 

 (0.007) (0.007) (0.008) (0.009) 

     
R2 0.64 0.64 0.68 0.68 

School FE  ✓  ✓  ✓  ✓ 

Balancing controls   ✓   ✓ 

W1 inputs     ✓  ✓ 

Schools 227 227 227 227 

Classrooms 853 853 853 853 

Students 12816 11925 11734 11068 
This table reports estimates of regressing standardized student test scores in wave 2 on 

standardized average peer test scores in wave 1 in our sample containing 227 schools, 853 

classrooms, and up to 12,816 students. Balancing controls include household income, family 

engagement with homework, gifted art classroom assignment, and parents’ efforts to get child 

assigned to a particular classroom. W1 inputs include standardized scales of student inputs 

(school effort, initiative in class, truancy, academic self-efficacy, and mental health), parent 

inputs (investment in private tutoring, time investments, parental strictness and parental 

support), school and teacher inputs (school environment and teacher engagement). Standard 

errors clustered at the classroom level in parentheses. Estimates in this figure are also shown 

in Figure 3. 
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Table B2. The effect of better peer test scores on educational inputs in wave 2 

Treatment: Peer test scores [std]     

  Coef. Std. err. R2 Classrooms Students 

Outcomes: educational inputs            

School effort [std] -0.058** (0.026) 0.56 852  10,694  

Initiative in class [std] -0.022 (0.026) 0.45 852  10,588  

Truancy [std] -0.002 (0.024) 0.18 853  11,151  

Cheated on exams [.48] 0.010 (0.014) 0.12 853  11,116  

Academic self-efficacy [std] -0.020 (0.023) 0.15 853  11,151  

Mental health [std] -0.028 (0.022) 0.16 853  11,141  

University aspirations [.57] 0.017* (0.010) 0.28 853  11,153  

University expectations [.44] 0.021** (0.010) 0.29 853  11,143  

Private tutoring [std] -0.000 (0.019) 0.37 853  11,204  

Time with parents [std] 0.077*** (0.024) 0.08 853  11,148  

Conflict with parents [.31] -0.016 (0.011) 0.06 853  11,121  

Parental strictness [std] 0.030 (0.022) 0.16 853  11,171  

Parental support [std] 0.033 (0.022) 0.20 853  11,171  

Harsh parenting [.33] 0.015 (0.010) 0.08 853  11,171  

Parent uni. aspirations [.51] 0.006 (0.011) 0.33 853  11,058  

School environment [std] -0.032 (0.025) 0.17 853  11,164  

Teacher engagement [std] 0.017 (0.026) 0.11 853  11,167  
This table reports estimates of regressing educational input measures in wave 2 on standardized average peer test 

scores in wave 1 in our sample containing 227 schools, 853 classrooms, and up to 11,067 students. Rows present 

results of models with different educational inputs as outcomes. Unconditional means of each outcome are shown 

in square brackets, and [std] marks outcomes that have been standardized to have a mean of zero and a standard 

deviation of one. All models control for school fixed effects, student test scores in wave 1, balancing controls, and 

educational inputs in wave 1. Standard errors clustered at the classroom level in parentheses. Estimates in this 

table are also shown in Figure 4. 
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Table B3. Returns to educational inputs from cumulative value-added models 

 
Outcome:  Student test scores in wave 2 [std] 

  Total effect   Partial effect 

  Coef. Std. err.   Coef. Std. err. 

Treatment:           

School effort [std] 0.158*** (0.009)   0.093*** (0.009) 

Initiative in class [std] 0.161*** (0.008)   0.109*** (0.008) 

Truancy [std] -0.036*** (0.006)   -0.008 (0.006) 

Cheated on exams [.48] -0.053*** (0.011)   -0.015 (0.011) 

Academic self-efficacy [std] -0.007 (0.006)   -0.023*** (0.006) 

Mental health [std] 0.008 (0.006)   -0.001 (0.006) 

University aspirations [.57] 0.147*** (0.013)   0.047*** (0.013) 

University expectations [.44] 0.204*** (0.013)   0.125*** (0.014) 

Private tutoring [std] 0.041*** (0.007)   0.027*** (0.007) 

Time with parents [std] -0.003 (0.006)   -0.003 (0.006) 

Conflict with parents [.31] 0.070*** (0.012)   0.038*** (0.012) 

Parental strictness [std] -0.029*** (0.006)   -0.039*** (0.006) 

Parental support [std] 0.029*** (0.006)   0.019*** (0.006) 

Harsh parenting [.33] -0.056*** (0.011)   -0.025** (0.012) 

Parent uni. aspirations [.51] 0.135*** (0.013)   0.068*** (0.012) 

School environment [std] 0.025*** (0.006)   0.007 (0.006) 

Teacher engagement [std] 0.014** (0.006)   0.005 (0.006) 

R2     0.71 

Schools     227 

Classrooms   852 

Students     10,771 
This table reports coefficient estimates of regressing student test scores in wave 2 on educational inputs in wave 

2 in our estimation sample containing 227 schools, up to 853 classrooms, and up to 12,816 students. Rows 

present coefficients of different regressors. Unconditional means of each input are shown in square brackets 

and [std] marks inputs that have been standardized to have a mean of zero and a standard deviation of one. 

Total effects are estimated one input at the time, whereas partial effects are estimates of all inputs jointly. All 

models control for school fixed effects, student test scores, average peer test scores, and educational inputs in 

wave 1. Standard errors clustered at the classroom level in parentheses. These results are also available in 

Figure 5. 
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Table B4. Academic peer effect mediated by educational inputs 

 

Outcome: Student test scores in wave 2 [std] 

  Coef. Std. err. 

Total mediated effect -0.009* (0.005) 

Mediated effect by     

  School effort -0.006*** (0.002) 

  Initiative in class -0.003 (0.003) 

  Truancy -0.000 (0.000) 

  Cheated on exams -0.000 (0.000) 

  Academic self-efficacy 0.001 (0.001) 

  Mental health 0.000 (0.000) 

  University aspirations 0.000 (0.000) 

  University expectations 0.001 (0.001) 

  Private tutoring -0.000 (0.001) 

  Time with parents -0.000 (0.000) 

  Conflict with parents -0.000 (0.000) 

  Parental strictness -0.000 (0.001) 

  Parental support 0.000 (0.000) 

  Harsh parenting -0.000 (0.000) 

  Parent uni. Aspirations -0.000 (0.001) 

  School environment -0.000 (0.000) 

  Teacher engagement 0.000 (0.000) 
This table reports the mediated effects based on Gelbach’s (2016) decomposition of 

our academic peer effect estimate using only within-school variation in our 

estimation sample containing 227 schools, up to 853 classrooms, and up to 12,816 

students. These estimates are produced using a modified version of the b1x2 Stata 

package. Rows present the mediated effect of different educational inputs in wave 2. 

All models control for school fixed effects, student test scores, average peer test 

scores, and educational inputs in wave 1. Standard errors clustered at the classroom 

level in parentheses. These results are also available in Figure 6. 
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Table B5. Permutation-based class-level sorting tests in estimation sample 

    

Share of classrooms with  

empirical p-values under   

 Classrooms 0.10 0.05 0.01 Avg. p-value 

Pre-assignment characteristics           

Student test scores 853 0.10 0.06 0.02 0.486 

Female student 853 0.06 0.04 0.02 0.562 

Student born before 1989 853 0.10 0.05 0.01 0.490 

Monthly household income over NT$100,000 853 0.09 0.04 0.01 0.491 

College-educated parent(s) 853 0.09 0.06 0.02 0.485 

Parent(s) work in government 853 0.08 0.04 0.01 0.487 

Ethnic minority parent(s) 853 0.08 0.04 0.01 0.494 

Student prioritized studies since primary school 853 0.12 0.06 0.01 0.491 

Student reviews lessons since primary school 853 0.12 0.06 0.01 0.478 

Student likes new things since primary school 853 0.13 0.07 0.02 0.465 

Student was truant in primary school 853 0.08 0.04 0.01 0.498 

Student had mental health issues in primary school 853 0.10 0.06 0.02 0.495 

Had private tutoring before junior high school 853 0.11 0.06 0.01 0.479 

Family help with homework before junior high school 853 0.09 0.05 0.01 0.496 

Student quarreled with parents in primary school 853 0.10 0.05 0.01 0.503 

Student enrolled in gifted academic class 853 0.09 0.05 0.02 0.466 

Student enrolled in arts gifted class 853 0.12 0.08 0.03 0.447 

Parents made efforts to place student in better class 853 0.13 0.07 0.02 0.465 
This table shows the results of permutation-based class-level sorting tests, in our estimation sample containing 227 schools, 853 classrooms, 

and 12,816 students. For these tests, we simulate 10,000 classrooms under the null of random assignment of students to classrooms within 

schools, calculate the mean of pre-treatment characteristics in synthetic classroom, and construct class-level empirical p-values as the share 

of times synthetic classroom means were more extreme than actual classroom means relative to the schools mean. Each row presents class-

level empirical p-values for a different pre-assignment characteristic. The last column shows the average p-value for all classrooms.  
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Table B6. Non-parametric sorting test in estimation sample 

 
    Share of class-dummy joint  

significance test p-values under 

  No. of school-level 

regressions .10 .05 .01 

Outcomes: Pre-assignment characteristics         
Student test scores 227 0.06 0.04 0.03 

Female student 216 0.05 0.02 0.02 

Student born before 1989 227 0.12 0.03 0.01 

Monthly household income over NT$100,000 208 0.09 0.04 0.00 

College-educated parent(s) 204 0.13 0.07 0.02 

Parent(s) work in government 205 0.06 0.02 0.01 

Ethnic minority parent(s) 179 0.06 0.02 0.01 

Student prioritized studies since primary school 227 0.12 0.06 0.01 

Student reviews lessons since primary school 227 0.10 0.06 0.02 

Student likes new things since primary school 227 0.14 0.10 0.02 

Student was truant in primary school 227 0.10 0.03 0.01 

Student had mental health issues in primary school 227 0.12 0.07 0.01 

Had private tutoring before junior high school 227 0.13 0.08 0.02 

Family help with homework before junior high school 226 0.08 0.06 0.02 

Student quarreled with parents in primary school 227 0.10 0.04 0.00 

Student enrolled in gifted academic class 206 0.11 0.05 0.02 

Student enrolled in arts gifted class 186 0.15 0.09 0.07 

Parents made efforts to place student in better class 225 0.14 0.10 0.04 
This table shows the results of non-parametric school-level sorting tests in our estimation sample containing 227 schools, 853 classrooms, 

and 12,816 students. School-by-school, we regress each pre-treatment characteristics on a set of class dummies, F-test them for joint 

significance, and calculate the share of times the F-tests p-values fall under typical significance thresholds. Each row presents class-level 

empirical p-values for a different pre-assignment characteristic. We use cluster-robust covariance matrices at the classroom level for each 

test. 
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Table B7. Oster (2019) proportional selection on unobservables in initial sample 

 

  

Degree of selection 

required to explain effect 

of peer test scores on 

outcomes 

Outcomes:   

Test scores -0.20 

School effort -0.10 

Initiative in class -1.30 

Truancy -0.30 

Cheated on exams -0.70 

Academic self-efficacy -1.80 

Mental health -0.60 

University aspirations -0.90 

University expectations -1.20 

Private tutoring 0.10 

Time with parents -0.40 

Conflict with parents -3.60 

Parental strictness -1.70 

Parental support -0.50 

Harsh parenting -4.40 

Parent uni. Aspirations -0.20 

School environment -0.70 

Teacher engagement -0.90 

Selection proportional to:    

  Balancing controls  ✓ 

  W1 inputs  ✓ 
This table reports Oster’s (2019) δ, the share of proportional selection 

needed to explain away each estimate in our initial sample 332 schools, 

1,241 classrooms and 14,383 students. Values of δ between zero and one 

imply that, under reasonable assumption, the effect can be explained by 

correlated unobservables. Each cell is an estimate from a separate 

analysis. All estimates are calculated using Oster’s (2019) psacalc 

Stata package, and assume a theoretical maximum R-square of one. All 

models control for school fixed effects and student test scores in wave 1. 

Pre-assignment characteristics are listed in Section 3.4. Educational 

inputs in wave 1 are listed in Section 4.1 
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Table B8. The effect of better peer ability on students’ own ability using alternative 

measures of ability 

 

Outcome: Student ability in wave 2 [std] 

  Ability measure used: 

       IRT Bayesian posterior mean of 

 Analytical Mathematical  General Analytical Mathematical 

       
Peer ability [std] 0.039** 0.048***  0.052*** 0.040** 0.051*** 

                               (0.019) (0.017)  (0.018) (0.020) (0.018) 

Own ability [std] 0.385*** 0.535***  0.592*** 0.394*** 0.555*** 

 (0.009) (0.009)  (0.009) (0.009) (0.009) 

       
R2 0.46 0.61  0.70 0.49 0.64 
This table reports coefficient estimates of regressing student’s own ability in wave 2 on standardized average peer ability and own 

ability in wave 1 in our estimation sample containing 227 schools, 853 classrooms, and 12,816 students. The columns vary the measure 

of ability used for the analysis. The identification of analytical and mathematical subcomponents of ability and the Bayesian posterior 

mean calculation based on Item Response Theory (IRT) models, the TEPS team could also identify two highly correlated but distinct 

subcomponents measuring analytical ability and mathematical ability based on disjoint subsets of test questions. The IRT models were 

also used to produce the standardized Bayesian posterior means of the three components identifiable in the test—the general ability 

component and the analytical ability and mathematical ability subcomponents. All models include school fixed effects and educational 

inputs in wave 1. Standard errors are clustered at the classroom level. *, ** and *** denote significance levels at the 10%, 5% and 1%. 
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Table B9. The effect of better peer ability on students’ own ability using instrumental 

variable estimators to account for measurement error in ability 

 

Outcome: Student ability in wave 2 [std] 

  Measure of ability 

 Analytical Mathematical Mixed 

Peer ability [std] 0.050* 0.038 0.039 

                               (0.030) (0.027) (0.030)     
Instrument Mathematical Analytical Alt. mixed 

t-statistic of first-stage coefficient 30.64 28.24 26.79 
This table reports coefficient estimates of instrumental variable regressions of student’s test scores in 

wave 2 on standardized average peer ability in wave 1 in our estimation sample containing 227 schools, 

853 classrooms, and 12,816 students. The measures of ability and the instrument vary across columns, as 

described in Section 5.2.2. All models include school fixed effects, and students’ own test scores and 

educational inputs in wave 1. Standard errors are clustered at the classroom level. *, ** and *** denote 

significance levels at the 10%, 5% and 1%. 
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Table B10. The effect of peer ability on educational inputs using a mixed ability IV 

approach 

 

  

Mixed IV effect of  

peer ability [std] 

  Coef. Std. err. 

Outcomes: educational inputs      

School effort [std] -0.083** (0.035) 

Initiative in class [std] -0.035 (0.037) 

Truancy [std] 0.018 (0.035) 

Cheated on exams [.48] 0.015 (0.020) 

Academic self-efficacy [std] 0.001 (0.033) 

Mental health [std] -0.048 (0.034) 

University aspirations [.57] 0.029** (0.014) 

University expectations [.44] 0.029** (0.015) 

Private tutoring [std] 0.018 (0.027) 

Time with parents [std] 0.073** (0.036) 

Conflict with parents [.31] -0.013 (0.017) 

Parental strictness [std] 0.053 (0.034) 

Parental support [std] 0.032 (0.033) 

Harsh parenting [.33] 0.006 (0.015) 

Parent uni. aspirations [.51] 0.004 (0.017) 

School environment [std] -0.033 (0.038) 

Teacher engagement [std] 0.005 (0.037) 
This table reports coefficient estimates of instrumental variable regressions of 

student’s educational inputs in wave 2 on standardized average peer ability in 

wave 1 in our estimation sample containing 227 schools, 853 classrooms, and 

12,816 students. Peer ability and its instrument are constructed using the ‘mixed 

IC’ approach described in Section 5.2.2. All models include school fixed effects, 

and students’ own ability and educational inputs in wave 1. Standard errors are 

clustered at the classroom level. *, ** and *** denote significance levels at the 

10%, 5% and 1%. 
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Table B11. The effect of peer ability using Sojourner’s (2013) correction for incomplete 

class sampling 

 

  

Effect of peer test scores [std] with Sojourner (2013)  

correction for peer test scores missing not at random 

Outcomes:             

Test scores [std] 0.126*** 0.090** 0.089** 0.090** 0.092*** 0.097*** 

                               (0.039) (0.037) (0.037) (0.036) (0.035) (0.036) 

School effort [std] -0.041 -0.039 -0.038 -0.045 -0.051 -0.054 

  (0.059) (0.055) (0.055) (0.055) (0.054) (0.054) 

Initiative in class [std] -0.085 -0.065 -0.060 -0.072 -0.081 -0.082 

  (0.066) (0.058) (0.057) (0.057) (0.056) (0.056) 

Truancy [std] -0.048 -0.020 -0.020 -0.018 -0.016 -0.021 

  (0.060) (0.058) (0.058) (0.059) (0.059) (0.058) 

Cheated on exams [.48] 0.035 0.015 0.020 0.030 0.029 0.026 

  (0.035) (0.031) (0.030) (0.031) (0.031) (0.030) 

Academic self-efficacy [std] -0.023 -0.029 -0.021 -0.012 -0.003 0.003 

  (0.056) (0.050) (0.049) (0.050) (0.049) (0.049) 

Mental health [std] -0.015 -0.009 -0.009 -0.008 0.002 0.002 

  (0.056) (0.049) (0.049) (0.050) (0.049) (0.049) 

University aspirations [.57] 0.053** 0.040* 0.042* 0.040* 0.041* 0.038* 

  (0.025) (0.022) (0.022) (0.022) (0.021) (0.021) 

University expectations [.44] 0.050** 0.031 0.032 0.029 0.034 0.033 

  (0.025) (0.022) (0.022) (0.022) (0.022) (0.022) 

Private tutoring [std] -0.003 0.004 -0.006 0.010 0.028 0.025 

  (0.048) (0.043) (0.042) (0.043) (0.042) (0.041) 

Time with parents [std] 0.064 0.137*** 0.135*** 0.118** 0.152*** 0.147*** 

  (0.056) (0.049) (0.049) (0.048) (0.049) (0.049) 

Conflict with parents [.31] 0.001 -0.008 -0.006 -0.008 -0.014 -0.015 

  (0.027) (0.023) (0.023) (0.023) (0.022) (0.022) 

Parental strictness [std] -0.000 0.020 0.033 0.027 0.033 0.032 

  (0.058) (0.050) (0.050) (0.049) (0.048) (0.048) 

Parental support [std] 0.042 0.051 0.064 0.060 0.067 0.064 

  (0.051) (0.046) (0.046) (0.046) (0.045) (0.045) 

Harsh parenting [.33] 0.019 0.006 0.008 0.015 0.009 0.006 

  (0.024) (0.022) (0.022) (0.022) (0.021) (0.021) 

Parent uni. aspirations [.51] 0.037 0.017 0.016 0.012 0.014 0.015 

  (0.029) (0.024) (0.024) (0.024) (0.023) (0.023) 

School environment [std] 0.012 -0.050 -0.050 -0.046 -0.065 -0.057 

  (0.069) (0.059) (0.058) (0.058) (0.057) (0.056) 

Teacher engagement [std] 0.037 -0.002 0.005 -0.016 0.008 0.011 

 (0.065) (0.057) (0.058) (0.057) (0.056) (0.057) 

Share of peers observed  School FE  ✓           

Share of peers observed  School K-cile FE  25 20 15 10 5 
This table reports coefficient estimates of regressing student outcomes in wave 2 on standardized average peer ability in wave 1 in our 

estimation sample containing 227 schools, 853 classrooms, and 12,816 students. These estimates correct for peer test scores missing not at 

random following Sojourner (2013) and implemented using Correia’s (2018) reghdfe Stata package. All models include school fixed effects, 

and students’ own ability and educational inputs in wave 1. Standard errors are clustered at the classroom level. *, ** and *** denote 

significance levels at the 10%, 5% and 1%. 
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Table B12. Corrected p-values for the effect of peer ability using Young’s (2019) 

randomization inference and Romano and Wolf’s (2007) step-down familywise error rate 

adjustment procedures 

 

  

Corrected p-values for the effect of peer test 

scores [std] using 

  

Young's (2019) 

Randomization-t 

inference 

Romano and Wolf's 

(2005) step-down 

procedure 

Outcomes:      

Test scores 0.002 0.050 

School effort 0.052 0.424 

Initiative in class 0.433 0.958 

Truancy 0.950 1.000 

Cheated on exams 0.537 0.958 

Academic self-efficacy 0.447 0.958 

Mental health 0.255 0.868 

University aspirations 0.170 0.760 

University expectations 0.064 0.468 

Private tutoring 0.994 1.000 

Time with parents 0.006 0.054 

Conflict with parents 0.196 0.844 

Parental strictness 0.202 0.858 

Parental support 0.146 0.828 

Harsh parenting 0.196 0.844 

Parent uni. Aspirations 0.627 0.958 

School environment 0.251 0.868 

Teacher engagement 0.537 0.958 
This table corrected p-values for our main results using i) Young’s (2019) randomization-t 

inference procedure to account for high-leverage, finite sample properties of the model error 

term, and the complex sampling structure of our data (Col. (1) based on 499 permutations), and 

ii) Romano and Wolf’s (2007) step-down procedure for controlling for familywise error rate in 

multiple hypotheses testing implemented using Clarke et al.’s (2019) rwolf Stata package 

(Col. (2), based on 499 replications). p-values smaller than 0.10 are shown in italics and 

smaller than 0.05 in bold. 
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Table B13. Heterogeneous and mediated effects of peer ability 

 

 

      Mediated effect 

  

Academic 

peer effect   Total    by student inputs by parent inputs by school inputs 

by monthly household income:               

  Less than NT$20,000 0.055*   -0.030**   -0.016 -0.011 -0.002 

   (0.028)   (0.014)   (0.012) (0.008) (0.003) 

  NT$20,000 to NT$50,000 0.057***   0.001   -0.000 0.001 -0.000 

   (0.019)   (0.007)   (0.006) (0.002) (0.000) 

  NT$50,000 to NT$100,000 0.052***   -0.010   -0.009 -0.001 -0.000 

   (0.020)   (0.008)   (0.008) (0.003) (0.000) 

  More than NT$100,000 0.052**   -0.019   -0.016 -0.005 0.002 

                               (0.025)   (0.014)   (0.013) (0.007) (0.002) 

by parent(s) education:               

  No college degree  0.050***   -0.008   -0.007 -0.001 0.000 

                                 (0.017)   (0.005)   (0.005) (0.002) (0.000) 

  College degree  0.043*   -0.015   -0.011 -0.005 0.000 

                               (0.025)   (0.016)   (0.014) (0.006) (0.001) 

by student test scores:               

  Bottom tertile  0.034*   -0.005   -0.003 -0.002 -0.000 

                                 (0.018)   (0.007)   (0.006) (0.003) (0.001) 

  Middle tertile  0.073***   -0.010   -0.006 -0.005 0.001 

                                 (0.019)   (0.009)   (0.007) (0.003) (0.001) 

  Top tertile  0.049**   -0.017*   -0.014* -0.002 -0.001 

                               (0.020)   (0.009)   (0.008) (0.003) (0.001) 

by student gender:               

  Male 0.056***   -0.014*   -0.009 -0.004* 0.000 

                                 (0.019)   (0.007)   (0.006) (0.002) (0.000) 

  Female 0.057***   -0.006   -0.008 0.003 -0.000 

                               (0.018)   (0.008)   (0.007) (0.002) (0.001) 

by school type:               

  Public     -0.009*   -0.007 -0.002 -0.000 

                                     (0.005)   (0.005) (0.002) (0.000) 

  Private     -0.004   -0.004 -0.003 0.004 

                                   (0.014)   (0.012) (0.004) (0.004) 

by Dao Shi experience:               

  10 years or less 0.060***   -0.019**   -0.020** -0.001 0.002 

                                 (0.022)   (0.009)   (0.008) (0.002) (0.001) 

  More than 10 years 0.044**   -0.005   -0.003 -0.002 0.000 

                               (0.018)   (0.006)   (0.006) (0.002) (0.000) 
This table reports peer and mediated effects based on Gelbach’s (2016) decomposition using only within-school variation in our estimation sample 

containing 227 schools, 853 classrooms, and 12,816 students. These estimates are produced using a modified version of the b1x2 Stata package. 

Rows present the peer and mediated effects for different subgroups defined based on wave 1 variables. All models control for school fixed effects, 

student test scores, average peer test scores, and educational inputs in wave 1. Standard errors are clustered at the classroom level. *, ** and *** 

denote significance levels at the 10%, 5% and 1%.  
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Appendix C. The fishing algorithm  

In this appendix we explain the steps of our fishing algorithm introduced in Section 3.2 in detail. 

We illustrate its use in the TEPS data. In Appendix D we provide Monte Carlo style evidence of 

its performance in simulated data. 

Sorting of students into classrooms within schools in TEPS 

Taiwan has an explicit mandate of random assignment of students to classrooms within schools. 

We first test whether the TEPS data is consistent with this mandate without imposing any sample 

restrictions and refer to this as our “initial sample”. This initial sample includes a total of 20,055 

students assigned to 1,244 classrooms across 333 schools in wave 1, for whom we have data from 

either students, parents, teachers or school administrators’ questionnaires. Most students can be 

matched across questionnaires—we lose fewer than 1,000 observations due to questionnaire non-

match—yet we estimate our initial tests on this unrestricted sample to limit the influence of 

selective questionnaire attrition.  

We first run sorting tests on student wave 1 standardized test scores, as well as on each 

characteristics we can unambiguously treat as pre-assignment; that is, variables capturing either 

fixed traits or events prior to entering junior high school.  

Standardized test scores are not strictly measured pre-assignment; they were taken by students 

during the first weeks of the first junior high school academic year, shortly after assignment to 

classrooms. However, it is highly doubtful that only a few weeks’ worth of exposure to peers could 

generate considerable peer effects already. Moreover, these test scores were never revealed to 

students, parents, teachers or school administrators so there is no chance of re-sorting of 

classrooms after initial assignment based on the results of these exams. However, finding sorting 

on standardized test scores would still be consistent with students being assigned to classrooms 

based on other ability or academic performance measures that are either known to the parents, 

teachers, or school administrators. In this spirit, we analyze standardized test scores in this paper. 

To run sorting tests loosely follow the within-school equation  

 Yics1 = βY̅ics1
−i + μs + εics1, (C1) 
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where Yics is the characteristic of student 𝑖 in class 𝑐 in school 𝑠 in wave 1, which is pre-determined 

at the time of assignment, Y̅ics1
−i  is the class leave-out mean of the same variable Y at wave 1 (the 

classroom peer mean of characteristic Y), μs is school-invariant unobserved heterogeneity which 

we account for using school fixed effects, and εics1 is a conditionally uncorrelated model error 

term.  

The sorting statistic of interest is closely related to t̂ = β̂ std. err. (β̂)⁄  with the critical values of 

the standard normal distribution as reference in large samples. A positive t̂ over critical values in 

the distribution indicates positive sorting of students into classrooms based on the tested pre-

determined characteristic. However, Guryan, Kroft and Notowidgo (2009) observe that, under 

random assignment, β̂ present a small negative bias which seems to disappear when controlling 

for school-level leave-out-mean of the characteristic in sorting tests. Jochmans (2020) argues that 

Guryan, Kroft and Notowidgo’s empirical correction results in low power for detecting sorting, 

derives analytical expressions for this bias in within-school estimators and proposes a bias-

corrected t̂ that solves this power issue. In our sorting tests, we present t̂ using the more commonly 

found Guryan, Kroft and Notowidgo (2009) method and the very recent Jochmans (2020) 

improvement. 

The second and third columns of Table C1 show the sorting test statistics for all pre-determined 

characteristics we consider. There is plenty of evidence suggesting that students are sorted into 

classrooms with similar peers in the initial sample: certainly for test scores, but also for family 

income and parental education, intellectual curiosity during primary school, private tutoring before 

entering junior high school, gifted academic and art class assignment, and on parents’ efforts to 

influence the student’s classroom assignment. Sorting on test scores in this sample is already 

reason enough for thinking that estimates of higher-ability peer effects might be biased. Yet further 

balancing tests on higher-ability peers—which regress Yics1 on Test Scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
ics1
−i —also show that 
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higher-ability peers are also related to several pre-determined characteristics at baseline. These 

balancing test results are shown in the last two columns of Table C1.8 

Our next step is to characterize the deviations from random assignment in this initial sample in 

order to hopefully correct them. In Taiwan, class assignment is tasked to schools themselves, as 

opposed to being done at the regional or school district level. Because of this, we suspect that 

                                                 

8 Note that, due to the large number of pre-treatment characteristics we test and the many students and classes in TEPS, 

we are more likely to find imbalances than many previous academic peer effect studies. The size of our detected 

imbalances is relatively small generally (very) small. In fact, simple back-of-the-envelope calculations suggest that in 

other datasets commonly used to estimate peer effects, such as the Project STAR data, imbalances of this size would 

have gone undetected.   

Table C1. Balancing and Sorting Tests on Initial Sample 

 

    
Sorting tests 

(t-statistic) 
  Balancing tests 

Treatment:  

 
Peer outcome  

leave-out-mean 

  Peer ability  

leave-out-mean [std] 

 Students 

Guryan et 

al. (2009) 

Jochmans 

(2020)  Coef. Std. err. 

Outcomes: Pre-assignment characteristics             

Student test scores [std] 19,957 3.0 6.6 
   

 
      

Female student 19,957 2.2 -0.9 
 

0.012 (0.007) 

Student born before 1989 19,866 -0.4 1.4 
 

-0.011** (0.005) 

Household income > NT$100k/mo. 19,629 0.9 2.2 
 

0.014*** (0.004) 

College-educated parent(s) 19,073 1.1 3.5 
 

0.036*** (0.005) 

Parent(s) work in government 18,979 1.3 2.2 
 

0.024*** (0.004) 

Ethnic minority parent(s) 19,070 1.5 1.9 
 

-0.011*** (0.004) 

Prioritized studies since primary school  19,830 -2.1 1.5 
 

-0.006 (0.005) 

Reviews lessons since primary school 19,813 0.0 2.6 
 

-0.002 (0.004) 

Likes new things since primary school 19,771 1.0 2.9 
 

0.005 (0.006) 

Was truant in primary school 19,674 1.3 0.4 
 

-0.022*** (0.005) 

Student had mental health issues in primary school 19,670 0.0 0.3 
 

0.001 (0.006) 

Had private tutoring before junior high 19,720 1.5 2.5 
 

0.024*** (0.006) 

Family help with homework before junior high 18,976 1.3 1.2 
 

0.006 (0.004) 

Student quarreled with parents in primary school 19,691 -0.5 -1.0 
 

-0.006 (0.006) 

Student enrolled in gifted academic class 19,779 2.3 4.3 
 

0.074*** (0.009) 

Student enrolled in arts gifted class 19,779 4.8 5.5 
 

0.033*** (0.010) 

Parents made efforts to place student in better class 19,698 5.8 4.8   0.050*** (0.006) 

Estimates in our trimmed sample of 333 schools and 1,257 classrooms. All estimators include school fixed effects. The reference distribution for the 

Guryan et al. (2009) and the Jochmans (2020) sorting statistics is the standard normal. t-statistics larger than critical values for a two-sided test are 

shown in italics for 95% confidence and in bold for 99% confidence. The last column reports cluster-robust standard errors at the classroom level. 

***, ** and * mark estimates statistically different from zero at the 90, 95 and 99 percent confidence level. 
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deviations from random assignment in our data could come directly from having non-compliant 

schools, and direct our efforts towards finding these schools. All results in Table C1 suggest that, 

in these defier schools, students assigned to higher-ability peers are also higher ability themselves 

and are also generally more advantaged in other respects. These schools might have sorted students 

into classrooms directly based on academic ability/performance, perhaps by assignment them to 

“gifted” classrooms together, and perhaps also as a response of parental pressure on the school. 

All these are informative insights in the next steps of our fishing algorithm.  

The Fishing Algorithm 

The Fishing Algorithm is a data-driven method we developed to detect schools that are likely not 

compliant with Taiwan’s national mandate to randomly assign students to classrooms. The 

algorithm combines permutation-based measures of the degree of sorting in the data with latent-

class modeling techniques. Despite seeming complex, the intuition behind the procedure is simple 

and its implementation is fast. Its steps are described in Box C1. 

Box C1. The Fishing Algorithm 

Step 1 Identify sorted/imbalanced pre-assignment characteristics. Identify your key measure of interest 

and, if sorted/imbalanced, continue to step 2. 

Step 2 Construct a school-level measure of sorting in your key measure of interest for each school s =
1… S. We propose a modified Herfindahl-Hirschman index for concentration of the key student 

characteristic into classrooms in each school. Call this measure Hs. 
Step 3 For each school, simulate the counterfactual Hs under random assignment of students to 

classrooms, while keeping school size, class size, number of classrooms and student 

compositions constant. Call this counterfactual assignment Hs
random. Use B permuted random 

assignments of students to classrooms to derive the school-level distributions of Hs
random for 

each school s. Using these distributions, construct the school-level share of permutations for 

which Hs is larger than Hs
random and call it Ss ∈ [0,1]. Ss measures of the degree of sorting of 

students to classrooms in each school over and above what chance would predict. 

Step 4 Use latent class models to predict Ss. Since Ss is censored below at 0 and above at 1, we propose 

fitting finite mixture tobit regressions. Select the number of latent classes in the model using a 

pre-determined goodness-of-fit measure (e.g., AIC, BIC). (If available, use school-level 

predictors for defier schools informed by your knowledge of the data. You can use likelihood 

ratio tests to decide whether these class predictors are worth including in the model.) Identify 

the latent class(es) associated with high Ss (close to 1); these are likely to capture defier schools. 

Using model estimates, construct the school-level posterior probability of belonging to a defier 

class. Call this measure Ps. 
Step 5 Construct a “likely defier” flag for each school based on whether Ps exceeds a pre-determined 

threshold. We suggest using a “most likely defier” rule: flag schools which are most likely to 

belong to a defier class as defier schools. Remove flagged schools from your estimation sample, 

call this the trimmed sample. Re-estimate your balancing/sorting tests in this sample. 
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In the first step, we identify whether there is evidence of sorting and/or imbalance in the data. 

Table C1 describes the results of these tests for the TEPS initial sample. Since our study focuses 

on estimating the effect of higher-ability classroom peers, we identify student test scores as our 

key pre-assignment characteristic for the remaining steps.  

In the second step, we construct our school-level measure of sorting of students into classrooms 

based on standardized test scores. We base our measure on the Herfindahl-Hirschman index, the 

most prominent measure of market concentration in economics. In school s with classrooms c =

1…C, we define our measure as 

 Hs =∑(
Test scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

cs

∑ Test scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
cs

C
c=1

)

2C

c=1

, (C2) 

where Test scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
cs is the average standardized test score in classroom c of school s.9 Hs is a 

measure of the concentration (or sorting) of student test scores into classrooms within each school, 

and it will range between 1/C (if Test scores̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
cs is identical in all classrooms) to 1 (if all students 

with positive test scores are together in one classroom—which is ridiculous with test scores but 

more easy to think of when measuring sorting by e.g., race or gender). At this point our constructed 

Hs includes test score sorting data for each of the 333 schools in TEPS. 

In the third step, we construct counterfactual distributions of Hs for each of the 333 schools in 

TEPS that reflect random assignment of students to classrooms within schools. To do this, we 

construct B = 400 permutations of random assignment of students to classroom within each 

school maintaining each schools’ data structure; that is, maintaining the student number and 

composition in each school, and the exact number and size of classrooms in each school. Ensuring 

the data structure is maintained is crucial for computing randomization-based statistics (Young, 

2019). For each permutation b = 1…B we thus end up with a measure Hs
random that reflects one 

way school sorting could have looked like if classrooms were randomly assigned within schools. 

                                                 

9 It is important to note that by standardized test scores we mean “scores from a standardized test” rather than “test 

scores that have been standardized to have a mean of zero and a standard deviation of one”. Steps 3 through 5 of the 

fishing algorithm work much better if Hs is constructed from test scores (or any other measure) that is weakly positive 

(i.e., with support in [0,∞)). 
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Since we do this B = 400 we end up with a distribution of this school concentration index based 

on 400 counterfactual classroom assignments for each school. We then construct Ss for each 

school: the share of the 400 permutations for which the actual school concentration Hs strictly 

exceeds the simulated concentration under random assignment Hs
random. For example, in a school 

where the actual score concentration was larger than 350 out of 400 simulated concentrations, Ss 

would take the value of 350/400 = 0.875. 

At this point, it is important to highlight why Ss is a superior measure of classroom sorting than 

Hs, especially to capture sorting on characteristics that are relatively rare. To do this, imagine 

trying to measure sorting based on race in a school with three classrooms and one racial minority 

student. Even if this school fully complies with random assignment, the measure Hs will equal 1, 

implying full sorting. This is because, in any classroom configuration, “all” minority students will 

Figure C1. The school-level concentration of classrooms based on test scores, 𝐒𝐬, in the 

TEPS data based on 𝐁 = 𝟒𝟎𝟎 classroom assignment permutations 

 
This figure shows the school-level distribution of our measure for whether schools sort students into classrooms more strongly 

than chance would allow, given the school size, number and classroom size and student composition. 
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be in the same classroom. The measure Ss, however, will equal 0—implying perfect sorting—

because in no permutation will Hs strictly exceed Hs
random. Generalizing based on this example, 

the key lesson is that Ss naturally normalizes classroom concentration to reflect the rarity of the 

characteristic of interest at the school level, a very useful property.10 

Figure C1 shows the distribution of our school-level measure of classroom concentration based on 

test scores, Ss, for all 333 schools in the TEPS data. If all schools in TEPS would have perfectly 

complied with random assignment of students to classrooms, we would expect this to closely 

resemble a standardized uniform distribution. The figure suggests that most schools are likely 

complying with the random assignment mandate, yet a small but non-negligible share of schools 

show very high degree of sorting that is inconsistent with random assignment. Eyeballing the 

distribution, one could conclude that schools in the rightmost part of the distribution—with Ss >

0.90 which adds up to roughly 80 schools—are much more likely be defying the mandate of 

random assignment. 

At this stage just dropping these 80 schools from our data would be rather crude. Under random 

assignment, we should still expect that some schools, by chance, ended up grouping students with 

similar test scores. Blindly trimming these schools could therefore lead to “over-trimming”: 

removing schools that have high sorting by chance. One consequence of over-trimming is that, by 

removing schools that by chance ended up with sorted classrooms while leaving other schools in, 

it can lead to negative sorting tests in the trimmed sample. Over-trimmed samples do not, in 

themselves, lead to biased peer effect estimates. However, over-trimming could remove legitimate 

variation that could be crucial for identifying peer effects, resulting in a loss of power and, if peer 

effects are extremely non-linear, it could even introduce attenuation bias in peer effect estimates.  

In the fourth and key step of our fishing algorithm, we try to disentangle schools that have strong 

sorting by chance from schools that are defying the mandate of random assignment using latent 

class models of Ss. Our preferred method is to fit a finite mixture model (FMM) of Ss to recover a 

                                                 

10 A second, perhaps more subtle, lesson is that we can only interpret Ps = 0 as evidence of strong classroom non-

sorting when the characteristic of interest is prevalent in the school (i.e., when the number of students with that 

characteristic exceed the number of classes in the school).  



 
76 

predicted probability of being a school defying the mandate of random assignment to classrooms 

for each school.11 One good reason for using FMM is that, based on its estimates, we can construct 

the posterior probability of belonging to each latent class modeled and. Once we have identified 

which class is likely to capture defier schools, this gives us a direct estimate of school-level 

probability to be a defier, which we then use to construct our “likely defier” school flag.  

For this step, there are four key choices to make: i) the correct model given the distribution of Ss, 

ii) the number of latent classes, iii) the class-level predictors (if any), and iv) the classification rule 

that flags a school as defier. We discuss these choices and our approach to making them in turn: 

i. For modelling the distribution of Ss, we opted for fitting a FMM tobit to account for the 

censoring of Ss at 1. For other characteristics or in other datasets where Ss shows less 

censoring, one can always fit beta or linear regression FMMs instead. In the TEPS data all 

these alternatives yield similar results.  

ii. We chose the number of latent classes that minimizes the Bayesian Information Criterion. In 

the TEPS data this was a 3-class model. Of these three classes, only one had a conspicuously 

large predicted mean for Ss, which was very close to 1. We identified this as the class of defier 

schools. The other two classes had much lower predicted means for Ss, both close to 0.5. Using 

the Akaike Information Criterion we would have chosen a 2-class model instead; a defier one 

with a predicted Ss very close to 1 and a complier one with predicted Ss close to 0.5. Both 

models would have classified schools near-identically. Models with more than 3 latent classes 

did not improve fit much but did increase optimization complexity and often had issues 

converging. 

iii. We chose school-level class predictors that were significantly related to Ss. In the TEPS data 

these are schools means for: children who report being in academically gifted classrooms, 

parents who push for their children to be assigned to particular classrooms, ethnic minority 

students, private tutoring lessons before joining junior high school, and two measures of 

baseline student effort. All these measures were positive predictors of belonging to the defier 

class, most of the statistically significant at conventional levels. These predictors meaningfully 

improved the model performance and, since models with and without class predictors are 

                                                 

11 We have also worked on procedures thar detect defier schools based on several P_s indices—to detect, for example, 

one type of defier school that sorts students to classrooms based on test scores, and a second type that sorts students 

based on their history of truancy—using unsupervised machine learning techniques such as hierarchical cluster 

analysis. 
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nested, one can make the choice to include these in the final model specification based on a 

likelihood ratio test. 

iv. For flagging schools as defiers we constructed for each school the probability of belonging to 

the defier class Ps—the class with predicted Ss close to 1—based on the FMM estimates with 

class predictors. We then opted for classifying defier schools as schools which were most likely 

to belong to the defier class; that is, those schools for which Ps > 0.5. Different thresholds can 

of course be justified, but this is a reasonable one with a clear a priori justification. Our model 

results are not sensitive to other reasonable classification thresholds such as Ps being larger 

than the sum of all other predicted class probabilities. 

Figure 1 shows the schools eventually flagged as defiers by our fishing algorithm across the Ss 

distribution. We overlay the probability of being a defier school Ps (on the right y-axis) in a 

scatterplot, with 0.5 as a dashed horizontal reference line. Our fishing algorithm flags 106 schools 

where Ps exceeds 0.5 as defiers. As expected, most flagged schools have Ss > 0.90, though a few 

schools with lower values of Ss are also flagged. In the TEPS data, the algorithm failed to identify 

complier schools with very high Ss. It is possible, of course, that all these schools with high Ss are 

in fact defiers, yet it is more likely that the FMM class predictors are just not strong enough to 

Table C2. Summary statistics of key variables in TEPS across samples 

 

  Mean of pre-assignment 

characteristics in sample: 

  TEPS Trimmed Estimation 

Characteristic:       

Student test scores (unstandardized) 40.9 40.5 41.0 

Female student 0.50 0.50 0.48 

Student year of birth 1988.59 1988.59 1988.6 

No. of siblings of student 1.77 1.78 1.75 

Responding parent is female 0.64 0.64 0.64 

Ethnic minority father 0.05 0.05 0.04 

Two-parent household 0.86 0.86 0.87 

Father's birth year 1958.6 1958.7 1958.6 

Father has post-secondary education 0.12 0.12 0.12 

Unemployed father 0.11 0.11 0.11 

Household monthly income is       

  NT$20,000 or less 0.11 0.11 0.10 

  NT$20,000-NT$50,000  0.41 0.41 0.41 

  NT$50,000-NT$100,000 0.35 0.35 0.35 

  More than NT$100,000 0.14 0.13 0.14 

        

No. of students (approx.) 20,055 13,760 11,068 
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discern the compliers among this group. As discussed above and in Section 3.4, this could lead to 

over-trimming and in fact we do see some evidence of this in Table 2, which shows sorting and 

balancing tests in our sample trimmed of the 106 schools flagged as defiers. Yet evidence of over-

trimming is not strong enough to be concerning.  

As a final point in this appendix, we show that out applying our fishing algorithm in the TEPS data 

does not introduce any evident selectivity in our estimation samples. Table C2 shows that our 

initial sample including all the TEPS data remains very similar to our trimmed sample—which 

includes all information from schools not flagged as defiers by our fishing algorithm—, and also 

remains similar to the our most restricted estimation sample, which includes only students for 

which we observe test scores, educational inputs and other key characteristics in both TEPS waves. 
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Appendix D. Validating the fishing algorithm using simulated data 

In this appendix, we use simulated data to validate our fishing algorithm and investigate its 

performance. Ideally, we would want to provide evidence from Monte-Carlo simulations of the 

performance of the algorithm in detecting schools that systematically sort students into classrooms. 

Unfortunately, we cannot provide Monte-Carlo evidence over many simulations—say, over 

10,000 realizations of the same data generating process—since i) Steps 4 and 5 of the algorithm 

require making some decisions that cannot be automatized (see Box C1 in Appendix C) and ii) the 

finite mixture models in Step 4 often have convergence issues that demand making additional 

decisions, such as trying out different optimization procedures, grid search across different 

parameter values, or try out various initial latent class probabilities. Nevertheless, we provide as 

extensive evidence of the performance of our fishing algorithm as our setting allows, and highlight 

lessons learned along the way. These lessons will prove useful to researchers intending to 

implement our fishing algorithm in their data. In addition, we have coded flexible simulation 

programs in Stata which will be available with the published version of this paper. 

The Data Generating Process (DGP) for our simulations 

We simulate data that closely follows our empirical setting in Taiwan: students are divided into 

schools and, within schools, assigned to classrooms. The only characteristic that varies across 

students is their ability. Classrooms are simple groupings of students within schools. Students in 

the same classroom can end up being similar or dissimilar to one another, depending partly on 

chance and partly on whether their school randomly assigns students to classrooms. Schools can 

differ in two dimensions: whether they actively sort students of similar ability into classrooms 

(sorter schools) or not (non-sorter schools), and—for sorter schools—the degree to which they 

sort students into classrooms. In addition, we also simulate a school-level variable that predicts 

whether the school is sorting or non-sorting. These three parameters—the number of sorting 

schools, the strength of sorting within sorting schools, and the strength of the sorting school 

predictor—are the key parameters we vary across our simulations. All other parameters, such as 

school size and classroom size, are kept constant across DGPs. 

Specifically, for each DGP we simulate data from 300 schools. We stochastically vary the number 

of students across schools between 50 and 70 with an independent uniform distribution, 𝑈[50,70], 
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mostly as a legacy for implementing the Guryan, Kroft and Notowidgo (2009) sorting test. Their 

method accounted for a small negative bias in classical sorting tests by controlling for school-level 

leave-out-mean of student ability, but this correction only works well when there is variation in 

school size in the data. For our exercises, however, we implement instead the solution proposed 

by Jochmans (2020), who derives analytical expressions for this negative bias and proposes a bias-

corrected test with better power and implementable without school-size variation. Once we have 

schools filled with students, we assign ability to students according to 𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ~ 𝑈[0,1].  

At this point, we randomly determine which schools are the sorting schools that sort students into 

classrooms based on 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, and which schools are non-sorting schools. The number of sorting 

schools, 𝑁𝑠𝑜𝑟𝑡𝑖𝑛𝑔, is the first key parameter we vary across DGPs.  

Here we also generate 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟, the variable predicting whether a school is a sorter or a non-

sorter, given by: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 1{sorting school} ∗ 𝑝 + 𝑈[0,1] ∗ (1 − 𝑝) 

where 1{sorting school} is a dummy that flags sorting schools, 𝑝 ∈ [0,1] is a predictor strength 

parameter, and 𝑈[0,1] is another independent random uniform. If 𝑝 equals one, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 will be 

a perfect determinant of whether a school sorting students into classrooms; if 𝑝 equals zero, 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 will be completely uninformative. The predictor strength 𝑝 is the second key parameter 

we vary across DGPs.  

Within each school we then sort students based on the 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ parameter in this school, 

and then sequentially assign them to similar-sized classrooms of roughly 15 students. 

𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ is key for simulating student sorting into classrooms for some schools but not 

others, as is defined as: 

𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = {
𝜃𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + (1 − 𝜃)𝑈[0,1] if student is in a sorting school

𝑈[0,1] if student is not in a sorting school 
 

where 𝜃 ∈ [0,1] is the parameter that governs the sorting strength in sorting schools and we vary 

it across DGPs. The way this parameter works is best explained with a few examples.  
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When 𝜃 is one, 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ equals 𝑎𝑏𝑖𝑙𝑖𝑡𝑦 in sorting schools and a random uniform for 

non-sorting schools. This implies that in sorting schools, students will be assigned to classrooms 

based on their 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, with the first classroom having the top 15 students, the second classroom 

the top 15 among the remaining students, and so on. This simulates very strong sorting of students 

into classrooms in a scenario we refer to as “perfect stacking”. In non-sorter schools, students will 

be randomly assigned to classrooms. If instead 𝜃 is zero, 𝑠𝑜𝑟𝑡𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ becomes a random 

uniform for all schools (sorting and non-sorting, resulting in random assignment of students to 

classrooms across the entire simulated data. Values of 𝜃 between zero and one will vary the 

strength of sorting, or stacking, in sorting schools while keeping random assignment in non-sorting 

schools. This 𝜃 is the second key parameter we vary across DGPs. 

To make sure there is enough identifying variation in peer aggregates of 𝑎𝑏𝑖𝑙𝑖𝑡𝑦, we ensure that 

no classroom has fewer than 10 students—which can happen because initial classroom size is set 

to 15 but variation in school size can occasionally lead to a classroom of fewer than 10 students. 

When this happens, we randomly redistribute students in these small classrooms to all other 

remaining classrooms, such that classrooms are always larger than 15 students.  

We test the performance of our fishing algorithm using simulated data from three DGP versions 

that correspond to cases of particular interest for an econometrician interested in applying our 

method: 

 𝑁𝑠𝑜𝑟𝑡𝑖𝑛𝑔 = 50, 𝜃 = 0.8, 𝑝 = 0.8: 50 strongly sorting schools with a good sorting predictor 

 𝑁𝑠𝑜𝑟𝑡𝑖𝑛𝑔 = 50, 𝜃 = 0.8, 𝑝 = 0.1: 50 strong sorting schools with a weak sorting predictor 

 𝑁𝑠𝑜𝑟𝑡𝑖𝑛𝑔 = 300, 𝜃 = 0.15: all schools are weak sorters, with a good sorting predictor 

The first is an ideal case where the researcher can detect the few schools that violate random 

assignment in the data, and has access to good enough predictors to detect whether a school is 

sorting systematically students. The second case showcases the limitations of our fishing algorithm 

when the researcher does not have access to reasonable predictors of sorter schools. The third case 

simulates the unfortunate situation where all schools sort students into classrooms, enough to 

invalidate random assignment in the data but with no hopes of being able to fish out defier schools 

with our method—or any other for that matter. 
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Performance of fishing algorithm 

After producing data using this DGP, we then i) test the degree of sorting in the simulated data, ii) 

run our fishing algorithm following the steps in Box C1, iii) evaluate the performance of our 

fishing algorithm in detecting sorter schools in the simulated data, and iv) estimate the degree of 

sorting in the data once the detected sorter schools are removed. These four sets of results are 

presented in Panels A, B, C and D in the tables below. 

We simulate five different realizations of each DGP and present the results of our fishing algorithm 

for each. For each simulation, we present our results in columns (1) through (5) of the tables below. 

The downslide of this approach is that it produces less systematic evidence of the performance of 

our algorithm than would Monte Carlo simulations. The upside, apart from being feasible, is that 

we can demonstrate the several decisions required from the researcher to use our method, explain 

the reasoning behind them, and showcase results of situation when, by chance, our method does 

not perform well.  

Case 1: Few strong sorter schools and a strong class predictor 

Table D1 shows the performance of the Fishing algorithm in five simulated datasets with 50 

strongly sorting schools and access to a good predictor for whether schools are sorters. Panel A 

shows Jochmans’ (2020) sorting test t-statistic estimated using the simulated student-level data. 

When positive and larger than critical values of the standard normal distribution, these t-statistics 

indicate positive sorting of students into classrooms based on ability. As expected, our simulated 

data shows strong evidence of sorting (first row) and this evidence is coming solely from the few 

sorter schools (second and third rows). 

Panel B shows the steps to select the best Finite Mixture Models (FMM) to detect sorter schools. 

These FMMs are estimated using school-level data where the outcome is our measure of ability 

concentration in classrooms (Ss, see Appendix C). We first estimate FMMs with 2, 3, and 4 

potential latent classes. We select the best among these models based on goodness of fit, using the 

smallest Bayesian Information Criteria (BIC); the BIC of the preferred model is marked in bold in 

each column. FMMs often have convergence issues—one of the reasons why we cannot produce 

complete Monte Carlo evidence in this Appendix. We mark models that failed to converge in 
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italics.  After choosing the preferred number of latent classes based on the BIC, we then choose 

whether the preferred model will include the variable 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 as a latent class predictor. For 

this we estimate FMMs with and without this latent class predictor and use a Likelihood Ratio 

(LR) test to choose between these nested models. Rejecting the null that the models are equal leads 

us to choose the model that includes 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 as a latent class predictor. Here too, we have 

missing values for the p-value of this LR test when either model does not converge. Finally, we 

show the marginal means for each class—the average outcome predicted for schools in each latent 

class—in the preferred model. These correspond to the predicted level of classroom concentration 

in schools in each latent class. We interpret the latent class(es) with unusually high predicted means 

as those that identify sorter schools. These are also marked in bold.  

There are three broad lessons from Panel B of Table D1. First, models with two or three latent 

classes are generally preferred, and models with four latent classes often have convergence issues. 

This relatively simple latent class structure is partly a direct result of our DGPs—which have, in 

fact, two latent classes of sorter and non-sorter schools—yet it confirms that the FMMs do not 

tend to over-fit latent classes in the data. Second, models that use latent class predictors also suffer 

convergence issues. This is a potential shortcoming, since we later show that these predictors can 

meaningfully improve the performance of our fishing algorithm. Third, there is almost always a 

latent class with a clearly larger predicted sorting strength, and the closer this prediction is to 1 it 

is that this class identifies sorter schools. 

Panel C summarizes the performance of the preferred FMM for classifying defier schools—

schools which, in violation of random assignment, systematically sort students into classrooms. 

We flag defier school as those for which the posterior latent class probability for the sorter class is 

larger than the sum of all the other posterior latent class probabilities, as described in Appendix C. 

We report four standard indicators to describe the performance of our algorithm at detecting 

schools that systematically sort students into classrooms: i) the number of schools classified as 

defiers (out of 300), ii) the percentage of schools that are correctly classified as defier schools by 

the fishing algorithm and are truly sorter schools, iii) the probability of being wrongly classified 

as a defier school and actually being a non-sorter school (false positives), and iv) the probability 

of being classified as a complier school and truly being a sorter school (false negative). Overall, 

the algorithm performs very well for this DGP: in 2 out of 5 simulations, the algorithm perfectly 
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separates sorter and non-sorter schools (col. (1) and col. (4)), and in 2 additional simulations it 

identifies no false negatives and only a few false positives (col. (3) and col. (5)). 

In column (2) the fishing algorithm somewhat fails: the algorithm indicates that the majority of 

schools as defiers, over 50% of which are actually non-sorter schools. This failure is not complete, 

however, in the sense that the algorithm only becomes too stringent, but does not misclassify sorter 

Table D1. Fishing algorithm performance in five simulated datasets with 50 strongly 

sorting schools (𝑵𝒔𝒐𝒓𝒕𝒊𝒏𝒈 = 𝟓𝟎, 𝜽 = 𝟎. 𝟖) and access to a good predictor for whether 

schools are sorters (𝒑 = 𝟎. 𝟖) 

 
Simulation number =  (1) (2) (3) (4) (5) 

Panel A: Sorting t-statistic in student-level data if DGP were known 

Jochmans (2020) sorting t-statistic:           

  for all schools 6.4 6.6 6.6 6.9 6.7 

  for non-sorter schools -1.2 -0.5 -0.4 1.7 0.1 

  for sorter schools 6.6 6.7 6.8 6.7 6.8 

            

Panel B: Finite Mixture Models on school-level data 

Model BIC for:           

  2 latent classes  316.7 336.7 326.6 313.4 327.8 

  3 latent classes  327.3 344.5 322.4 320.6 327.0 

  4 latent classes  318.6 350.5 334.6 325.3 330.3 

            

LR for model with sorting predictor (p-value) 0.000 - - 0.000 - 

            

Predicted sorting strength measure for:           

  class 1 0.48 0.13 0.09 0.53 0.11 

  class 2  1.02 0.73 0.53 1.01 0.55 

  class 3  - - 1.03 - 1.02 

  class 4  - - - - - 

            

Panel C: Selected FMM model performance for defier classification 

Schools identified as defiers 50 225 76 50 71 

Correctly classified schools 100.0% 41.7% 91.3% 100.0% 93.0% 

Pr[Wrongly classified defier] 0.0% 77.8% 34.2% 0.0% 29.6% 

Pr[Wrongly classified complier] 0.0% 0.0% 0.0% 0.0% 0.0% 

            

Panel D: Sorting t-statistics in student-level data in classified schools 

Jochmans (2020) sorting t-statistic:           

  for classified complier schools -1.2 -6.7 -4.2 1.7 -3.9 

  for classified defier schools 6.6 7.0 7.1 6.7 7.1 

            
In Panels A and D, numbers in bold mark values larger than the 5% critical value in the reference a standard normal 

distribution. In Panel B, numbers in bold mark the smallest Bayesian Information Criterion (BIC) and the largest predicted 

outcome mean, used to select the preferred model, and italics marks models that did not comply with convergence criteria. 

A missing Likelihood Ratio (LR) test p-value is missing in Panel B indicates that either the model using sorting predictors 

for the latent classes or the model without predictors did not converge (almost always the former).  
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schools as compliant. The good news is that our exercise reveals why this failure occured: the 

selected FMM model in this instance could not use 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 as a latent class predictor to identify 

the latent class with defier schools, and consequently the predicted sorting strength for this model 

is 0.73, well below that of all other models. The lesson for researchers applying our method here 

is that having access to a good predictor of whether schools are sorting will meaningfully improve 

the performance of our fishing algorithm, even in settings with few strongly sorting schools. 

Panel D shows Jochmans’ (2020) sorting test performance back in the student-level simulated data 

in complier schools—those classified as non-sorters by the fishing algorithm. For the two models 

with perfect performance (col. (1) and col. (4)), we see that the t-statistics match the non-sorter t-

statistics in Panel A. For the other three models, we see negative and significant t-statistics (col. 

(3) and col. (5)); much more negative for the worst-performing model (col. (2)).  

Negative and significant t-statistics of sorting tests become increasingly more frequent as the rate 

of false positives increases – that is, the probability of wrongly classifying non-sorting schools as 

defier schools. In Appendix C, we call this situation “over-trimming”, corresponding to situations 

when the fishing algorithm wrongly excludes schools that are actually compliant with random 

assignment. The issue with over-trimming is that it could lead to censuring the distribution of peer 

effects.  

Importantly, our algorithm can be used as a diagnostic tool for over-trimming, since a clear sign 

of over-trimming is a “flipping” sign of Jochmans’ t-statistic: a positive and significant t-statistic 

in the untrimmed data (as in Panel A) and a negative and significant t-statistic in the trimmed data 

(as in panel D). When this occurs, we suggest going back to the FMM specification to improve the 

classification performance, either my changing the number of classes or by exploring additional 

and hopefully better class predictors. An important early sign that the algorithm is able to discern 

sorter from non-sorter schools is a high predicted sorting strength for at least one latent class, like 

in Col. (1) and (3) to (5) in Panel B.  

Case 2: Few strong sorter schools and a weak class predictor 

Table D2 shows the performance of our algorithm in a DGP where there are still 50 strongly sorting 

schools, but the researcher only has access to a much weaker predictor of whether schools are 
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sorters. This reflects the situation of researchers with either limited data or limited institutional 

knowledge to construct such predictors.  

Panel A confirms that our simulated data conform to the intended DGP. Panel B illustrates that i) 

in these data the FMMs generally choose simpler 2-class structures, that ii) even with a much 

Table D2. Fishing algorithm performance in five simulated datasets with 50 strongly 

sorting schools (𝑵𝒔𝒐𝒓𝒕𝒊𝒏𝒈 = 𝟓𝟎, 𝜽 = 𝟎. 𝟖) and but only a weak predictor for whether 

schools are sorters (𝒑 = 𝟎. 𝟏) 

 
Simulation number =  (1) (2) (3) (4) (5) 

Panel A: Sorting t-statistic in student-level data if DGP were known 

Jochmans (2020) sorting t-statistic:           

  for all schools 6.7 7.0 6.5 6.7 6.6 

  for non-sorter schools 0.6 1.6 -1.8 -0.4 -0.8 

  for sorter schools 6.7 6.8 6.8 6.8 6.7 

            

Panel B: Finite Mixture Model selection on school-level data 

Model BIC for:           

  2 latent classes  307.5 322.9 324.1 308.7 323.4 

  3 latent classes  317.2 325.4 331.5 313.3 331.4 

  4 latent classes  329.7 336.9 342.0 330.1 346.1 

            

LR for model with sorting predictor (p-value) 0.000 0.000 0.000 0.000 - 

            

Predicted sorting strength measure for:           

  class 1 0.18 0.17 0.19 0.20 0.22 

  class 2  0.73 0.74 0.78 0.78 0.77 

  class 3  - - - - - 

  class 4  - - - - - 

            

Panel C: Selected FMM model performance for defier classification 

Schools identified as defiers 228 233 192 199 207 

Correctly classified schools 40.7% 39.0% 52.7% 50.3% 47.7% 

Pr[Non-sorter school | Defier] 78.1% 78.5% 74.0% 74.9% 75.8% 

Pr[Sorter school | Complier] 0.0% 0.0% 0.0% 0.0% 0.0% 

            

Panel D: Sorting t-statistics in student-level data in classified schools 

Jochmans (2020) sorting t-statistic:           

  for classified complier schools -5.9 -5.2 -8.8 -7.8 -6.8 

  for classified defier schools 7.1 7.2 7.1 7.2 7.0 

            
In Panels A and D, numbers in bold mark values larger than the 5% critical value in the reference a standard normal 

distribution. In Panel B, numbers in bold mark the smallest Bayesian Information Criterion (BIC) and the largest 

predicted outcome mean, used to select the preferred model, and italics marks models that did not comply with 

convergence criteria. A missing Likelihood Ratio (LR) test p-value is missing in Panel B indicates that either the model 

using sorting predictors for the latent classes or the model without predictors did not converge (almost always the 

former).  
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weaker predictor the FMMs tend to prefer models with class predictors, but that iii) the predicted 

sorting strength for the high-sorting class is much weaker (between 0.73 and 0.78) than when a 

good class predictor is available (in Table D1). As a direct result, Panel C shows much higher rates 

of misclassification, driven entirely by a higher rate of non-sorter schools identified as defiers; all 

sorter schools are always correctly classified. As explained above, this will lead to over-trimming, 

Panel D confirms the presence of over-trimming: we find strong evidence of negative sorting in 

classified complier schools, and positive sorting in the classified defier schools. In sum, Table D2 

corroborates the importance of having a strong sorting predictor for good performance of our 

fishing algorithm, but it also indicates two useful diagnostics that can tell the researcher whether 

the algorithm is likely to be performing poorly: a relatively low predicted sorting strength for the 

high-sorting latent class, and a strong flipping for the Jochmans (2020) sorting t-statistic for the 

classified compliers subsample. Compared to the findings of Table D1, the findings of D2 indicate 

that finding one or multiple strong class predictors is crucial for preventing the algorithm from 

over-trimming the sample.   

Case 3: Weak but generalized sorting 

Table D3 shows the performance of our fishing algorithm in a DGP that simulates sorting in all 

schools, weaker relatively to the previous DGP but strong enough that it would be detected by 

Jochmans (2020) t-statistic. This corresponds to setting with generalized violations of random 

assignment, such that no natural experiment could be salvaged from the data using our algorithm.  

Panel A confirms that our simulated data conforms to this setting, producing t-statistics that 

significant around the 1% level. Panel B shows that i) the FMMs in this setting tend to choose 3- 

and 4-class structures, ii) the sorter school predictor is never statistically significant at conventional 

levels, which was to be expected since all schools are sorters, and iii) the predicted sorting strength 

in the high-sorting latent class is higher than in Table D2 but lower than in Table D3. This high 

predicted sorting strength results in relatively few schools identified as defiers, as show in Panel 

C. Because the FMMs classify as defiers the schools where the strongest sorting occurs, Panel D 

again shows strong flipping in the Jochmans (2020) t-statistic.  

Overall, Table D3 indicates that situations where all schools sort students into classrooms 

(generalized sorting) compared to clustered sorting (cases 1 and 2) are characterized by i) relatively 
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complex latent class structures, ii) relatively low model fit yet iii) high predicted sorting strengths 

for the high-sorting latent class even in the absence of good sorting school predictors (Panel B), 

and iv) flipping of the Jochmans (2020) sorting t-statistic for identified complier schools (Panel 

D). 

 

Table D3. Fishing algorithm performance in five simulated datasets with all weakly 

sorting schools (𝑵𝒔𝒐𝒓𝒕𝒊𝒏𝒈 = 𝟑𝟎𝟎, 𝜽 = 𝟎. 𝟏𝟓) 

 
Simulation number =  (1) (2) (3) (4) (5) 

Panel A: Sorting t-statistic in student-level data if DGP were known 

Jochmans (2020) sorting t-statistic:           

  for all schools 3.6 4.5 4.3 4.6 3.0 

  for non-sorter schools - - - - - 

  for sorter schools 3.6 4.5 4.3 4.6 3.0 

            

Panel B: Finite Mixture Model selection on school-level data 

Model BIC for:           

  2 latent classes  105.0 103.7 85.4 104.9 99.4 

  3 latent classes  93.4 92.5 66.3 103.1 95.0 

  4 latent classes  95.1 84.9 70.4 88.7 91.9 

            

LR for model with sorting predictor (p-value) 0.818 0.280 0.170 0.066 0.850 

            

Predicted sorting strength measure for:           

  class 1 0.16 0.15 0.09 0.13 0.05 

  class 2  0.56 0.41 0.52 0.52 0.38 

  class 3  0.93 0.72 0.92 0.90 0.81 

  class 4  - 0.95 - - 0.96 

            

Panel C: Selected FMM model performance for defier classification 

Schools identified as defiers 79 66 82 107 46 

Correctly classified schools 26.3% 22.0% 27.3% 35.7% 15.3% 

Pr[Non-sorter school | Defier] - - - - - 

Pr[Sorter school | Complier] - - - - - 

            

Panel D: Sorting t-statistics in student-level data in classified schools 

Jochmans (2020) sorting t-statistic:           

  for classified complier schools -4.7 -3.6 -3.9 -4.7 -3.2 

  for classified defier schools 6.7 6.9 7.5 7.5 5.6 

            
In Panels A and D, numbers in bold mark values larger than the 5% critical value in the reference a standard normal 

distribution. In Panel B, numbers in bold mark the smallest Bayesian Information Criterion (BIC) and the largest 

predicted outcome mean, used to select the preferred model, and italics marks models that did not comply with 

convergence criteria. A missing Likelihood Ratio (LR) test p-value is missing in Panel B indicates that either the model 

using sorting predictors for the latent classes or the model without predictors did not converge (almost always the 

former).  
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A practitioner’s guide for researchers wanting to use our fishing algorithm 

Our fishing algorithm combines several intuitive steps which are nonetheless somewhat 

technically complex. Drawing on the lessons illustrated in this section and on our own experience 

in developing this algorithm, we make the following suggestions to researchers intending to use 

our method: 

1. Strive to find predictors of whether a school sorts students into classroom, even if these 

predictors are not perfect. Good predictors will meaningfully improve the performance of 

our method, even if it can still be applied without them. Place more trust in applications with 

institutionally sound sorting predictors that are also statistically and quantitatively strong 

inputs in your latent class model.  

2. Your latent class that captures sorting schools will have a predicted sorting strength close 

to or exceeding 1. By the nature of our measure of sorting strength, sorting schools should 

have strengths very close to or greater than 1. Latent classes with predicted sorting strengths 

much below 1 are therefore more likely to also capture non-sorting schools, increasing over-

trimming problems. If your latent class model is not identifying classes with high enough 

predicted sorting strengths, this could be a sign that i) the class structure is not complex enough 

(solved by testing models with more latent classes), ii) your sorting school predictors are not 

good enough (solved by finding better predictors or a better structure for existing ones), or iii) 

sorting is too widespread in your data (only solved, sadly, by finding other data that reflects a 

better natural experiment). 

3. Beware of sorting test flipping. Sorting test flipping—a large and positive sorting t-statistic 

in the whole data and a large and negative sorting t-statistic in the subsample of identified 

complier schools—is a sign of either over-trimming or widespread sorting. 
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